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Abstract
The study of complex activities such as scientific production and software development often requires model-
ing connections among heterogeneous entities including people, institutions, and artifacts. Despite advances
in algorithms and visualization techniques for understanding such social networks, the process of construct-
ing network models and performing exploratory analysis remains difficult and time-consuming. In this article,
we present Orion, a system for interactive modeling, transformation, and visualization of network data.
Orion’s interface enables the rapid manipulation of large graphs—including the specification of complex link-
ing relationships—using simple drag-and-drop operations with desired node types. Orion maps these user
interactions to statements in a declarative workflow language that incorporates both relational operators
(e.g. selection, aggregation, and joins) and network analytics (e.g. centrality measures). We demonstrate how
these features enable analysts to flexibly construct and compare networks in domains such as online health
communities, electronic medical records, academic collaboration, and distributed software development.
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Introduction

As social network analysis has gained popularity,

researchers have developed novel statistical tech-

niques, visualization designs, and user interfaces (UIs)

to make sense of large networks. However, many of

these advances take the process of assembling a net-

work model for granted. Much data that are collected

for analysis, whether scraped from online data sources

or tabulated using traditional surveys, are not inher-

ently in the form of a network but instead a raw list of

data points and their corresponding attributes. This

requires analysts to extract their own model of a net-

work from the raw data. For many data sets, networks

can be modeled in as many different ways as analysts

have hypotheses. For instance, after collecting a data-

base of online community data, analysts may wish to

examine the relationships between community

members to measure collaborative support or the rela-

tionships between thread posts to measure the disse-

mination of information or the relationships between

communities as a whole to measure comparative com-

munity success. To analyze each of these scenarios,

completely different network models need to be

extracted from the original data.

1Stanford University, Stanford, CA, USA
2IBM Research, Hawthorne, NY, USA

Corresponding author:
Jeffrey Heer, Stanford University, 375 Gates Hall, 3B, Stanford, CA
94305-9035, USA.
Email: jheer@cs.stanford.edu



Typically, refactoring network data into such vari-

ous models requires custom code that can take analysts

days or even weeks to write. While it is also possible to

express most of the necessary operations as database

queries, this requires defining a schema, loading the

data, and then forming the correct Structured Query

Language (SQL) queries—including complex queries

such as multitable joins. Repeating this level of effort

as new questions emerge may undermine the explora-

tory process and even dissuade some analysts from

testing all hypotheses.

To address these issues, we introduce Orion, a sys-

tem for interactive modeling, transformation, and

visualization of network data. While many visualization

and data mining techniques have been proposed for

social network analysis, Orion focuses on the often-

overlooked early stages of data transformation and

assessment when forming network models from source

data. Orion enables iterative, exploratory analysis by

reducing hours of programming and transformation to

a few minutes of interactive, graphical specification.

We make the following contributions:

A unified model and workflow language for network data.

We use relational data tables as our fundamental

model and represent networks as edge tables over a

domain of integer node indices. We chose this model

to correspond to those used by analytic databases and

scalable network analysis packages. Our workflow lan-

guage provides both relational operators and graph

analysis routines and enables the generation of reusa-

ble analysis scripts. The language supports a range of

analysis tasks including network definition, filtering,

aggregation, and statistics computation.

A graphical UI for iterative network manipulation and

visualization. Orion translates UI actions, such as

drag-and-drop and menu commands, into operations

in the underlying workflow language. Orion also sup-

ports the specification of complex linking relation-

ships. The system first constructs a graph model of

links among table columns; a traversal algorithm then

identifies all feasible linking paths defining networks

for a set of user-selected node types. This approach

simplifies the otherwise difficult process of specifying

a series of relational join and aggregation operations.

Once a network has been defined, Orion enables

visual exploration using tabular, matrix, and node-link

views. Networks can also be exported for use in other

analysis tools.

The rest of the article is structured as follows: After

reviewing prior work, we describe our data model and

present the Orion interface. Next, we discuss our

enabling algorithms for network extraction and

describe our workflow language. As a preliminary

evaluation of Orion, we demonstrate its use in case

studies of online health communities, electronic medi-

cal records (EMR), academic collaboration, and dis-

tributed software development. We then discuss future

work and conclude.

This article is an extended version of an earlier pub-

lication1 and features more network operators, further

details on our workflow language, and an additional

case study. This version also includes Appendix 1 with

implementation and evaluation details for our foreign

key identification algorithm.

Related work

Orion draws on related work in graph visualization,

analysis tools, and data management. We discuss

selected relevant projects below.

Graph visualization techniques

Researchers have devised a variety of visualization

techniques for networks.2 Two common representa-

tions used in social network analysis are node-link dia-

grams (typically using force-directed placement) and

adjacency matrix views.3 Hybrids of the two have also

been proposed.4,5 These approaches organize ele-

ments according to the linkage structure of the graph.

An alternative approach is to plot network data

according to the attributes of the nodes,6,7 as in a scat-

ter plot or so-called semantic substrates.6 Network

links can then be drawn between nodes. This approach

is well suited for assessing potential correlations

between node attributes and network structure.

In a related vein, PaperLens8 uses multiple coordi-

nated views of network attributes to explore publica-

tion databases. The NetLens system9 generalizes this

approach to support networks that fit a ‘‘content-

actor’’ data model, that is, bipartite networks such as

publications and authors. In contrast, Orion supports

an arbitrary number of linking relationships both

within and between data tables.

Others have researched means of dealing with large

graphs in excess of tens of thousands nodes. Common

strategies include filtering and aggregation. Van Ham

and Perer10 introduce a degree-of-interest function11

that reduces a graph to a small connected subset of

nodes based on a set of foci (e.g. search results).

PivotGraph7 and Honeycomb12 aggregate networks by

‘‘rolling up’’ edges according to node attributes, for

example, an analyst can collapse a social network of

corporate employees to show the summed connection

strengths between workers’ geographic locations.

ManyNets13 enables comparison among multiple net-

works using a tabular view of summary graph

112 Information Visualization 13(2)



statistics. If desired, users can still view standard

(albeit less scalable) node-link diagrams on demand.

Orion draws on this prior work: it provides both

node-link and matrix visualizations and supports net-

work aggregation based on node attributes. However,

with the sole exception of NetLens,9 each of the above

systems assumes that a well-defined network is given

as input to the tool. None of these tools help the user

define and assess a variety of network models derived

from arbitrary data tables.

Network analysis tools

Recent years have seen a proliferation of network anal-

ysis tools. Many of these tools combine visualization

and statistics within an interactive environment.14–18

Others are programming libraries19–21 or menu-driven

interfaces22,23 that provide access to analysis algo-

rithms. While these tools support data import from

common file formats (e.g. GraphML) and external

data services (e.g. Twitter or Facebook), they do little

to facilitate the flexible construction of network mod-

els from arbitrary data tables. Orion is not intended as

a replacement for these systems; rather, it is designed

to assist the unsupported early stages of network anal-

ysis. In the process, it enables the use of these down-

stream tools.

Managing graph data

Another domain of related work is graph data manage-

ment. Database researchers24,25 have developed storage

strategies and query languages25 for large networks.

Similarly, a number of commercial systems—including

neo4j, InfiniteGraph, AllegroGraph, DEX, OrientDB,

and sones/GraphDB—are now available. These sys-

tems facilitate storage, indexing, and querying of large

graphs but with goals different from Orion.

Representative applications include managing social

network websites and querying motifs in biological net-

works. Orion instead supports the construction and

assessment of network models from source data.

Interactive data transformation and querying

Orion focuses on transforming data to create network

models. In a related vein, other research systems have

been designed to assist the early stages of data cleaning

and reformatting. Google Refine26 and Data

Wrangler27 enable analysts to reformat input data sets

and correct data errors prior to analysis. D-Dupe28

assists the process of finding and resolving duplicates

within a data set. Any of these tools might be used to

prepare data tables prior to network modeling with

Orion. Similar to Wrangler, Orion produces as output

not only data but also a declarative transformation

script that can be reapplied to new data and inspected

to review data provenance. In this light, Orion can also

be understood as an end-user programming tool for

network manipulation.

Orion was particularly influenced by (and is named

in relation to) the Polaris system,29 now commercia-

lized as Tableau. Polaris maps drag-and-drop opera-

tions of data variables into a formal algebra from

which both database queries and resulting visualiza-

tions are derived. One key insight from this work is the

value of deeply coupling visualization tools with rich

facilities for data transformation. Orion similarly pro-

vides a UI in which user actions are mapped to state-

ments in an underlying data transformation language.

While Polaris enables filtering and aggregation opera-

tions over a single data table, Orion instead enables

manipulation of multiple tables, including linking rela-

tionships realized as relational joins.

The two systems most similar to Orion are Gilbert

and Auber’s30 work on automated graph generation

and Liu et al.’s31 Ploceus. Both of these systems enable

analysts to extract network models from tabular data

and visualize the results. Gilbert and Auber30 analyze

the relationships among table columns to infer a hier-

archy of values (e.g. continent, country, and city).

They present an interactive visualization of these hier-

archies with which users can select a desired network

model that links entities according to shared column

values. However, the system only operates on a single

table. Ploceus31 enables users to similarly extract net-

works based on shared properties and provides a suite

of filtering, aggregation, and subdivision operations.

Like Orion, Ploceus defines most of its operations

using relational algebra and includes support for mul-

titable joins. However, Orion provides more sophisti-

cated subdivision methods and is unique in providing

mixed-initiative support for network construction:

Orion can automatically infer foreign key relationships

and recommend possible network models for

requested node types.

Data model

A variety of data models exist for handling graph data;

common structures include adjacency lists and adja-

cency matrices. However, these representations alone

are insufficient for network analytics, as in many cases

networks must be derived from a prior data source

permitting a number of models and parameterizations.

As a simple example, a social network extracted from

an email archive might include links only between sen-

ders and recipients or might include links among all

co-recipients.
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Prior research on visualization toolkits has noted the

value of representing networks as relational tables:32

each row represents an edge in the graph, and columns

contain source and target node values among other edge

attributes. This format provides a sparse representa-

tion of the network, enables easy querying of attri-

butes, and supports efficient edge iteration. On the

other hand, this format is inefficient for path following

and is thus ill-suited for many graph algorithms. As a

result, we adopt a hybrid data model in Orion.

We use relational data tables as our base representa-

tion. Tables can represent individual node types or

linking relationships. At times, node types may be

implicit within the attributes of a table; Orion provides

methods to promote these values to their own table.

Networks can be inferred from the foreign key rela-

tions among tables. This design allows us to support

arbitrary node types and linking relations while facili-

tating integration with relational databases.

Once a specific linking relationship has been chosen

(as described in subsequent sections), Orion models

the network using a specialized edge table format.

Source and target columns represent incident nodes

using zero-based integer indices. For efficient process-

ing, these indices default to the row index in the corre-

sponding node table. This scheme works well for edges

involving a single node table but leads to index colli-

sions among different tables. To ensure distinct keys,

we bias the indices for a given table by the total size of

any previous tables. The mapping from node tables to

index ranges is stored as metadata for the edge table.

Some graph analysis routines, such as force-directed

layout or clustering coefficient calculation, can be per-

formed by simply iterating over edges. However, other

methods—including shortest path and betweenness

centrality algorithms—must traverse the graph by fol-

lowing paths. Accordingly, our edge tables support the

construction and caching of adjacency lists, repre-

sented as an array of sorted integer arrays for in-links,

out-links, or both.

This integer-based representation provides multiple

benefits. In particular, it allows rapid access of associ-

ated node data via index-based table lookups and facil-

itates the creation of efficient network analysis

routines. Representing nodes as zero-based integers

enables the use of simple arrays to keep state within

graph algorithms, avoiding the overhead of associative

data structures.

Our data model, like the rest of Orion, is imple-

mented in the Java programming language. We have

implemented our own data structures and processing

routines, but our data model was intentionally chosen

to correspond to those used by modern analytic data-

bases and scalable network analysis packages.21 In

future work, we want to exploit this correspondence to

implement our workflows on massively scalable plat-

forms. We use relational operators for as much of our

workflow as possible, so that we can later leverage

shared-nothing parallel databases. That said, we will

show shortly that our own implementation already

scales to networks involving millions of elements and

so supports a broad class of data sets.

The Orion UI

With the Orion UI, analysts can import source data

from multiple formats, specify a variety of network

models, compute statistics, and visualize the results.

Analysts can then export either the resulting data or a

declarative script defining the transformation work-

flow. In this section, we first describe the design of the

Orion interface through a concrete usage scenario. We

then provide more detailed descriptions of Orion’s UI

components.

Usage scenario

Consider the real-world example of a researcher (a

Computer Science PhD student) studying online

health communities organized around medical condi-

tions (e.g. asthma, lupus, and lyme disease). Driving

questions include the following: How do community

dynamics and structure vary across conditions? Can

we gain new insights from the co-occurrence of symp-

toms and conditions? To explore these questions, our

analyst collected over 3 million discussion posts from

MedHelp.org, a public online health site. The initial

database consists of a single table where each row rep-

resents a post on the site. Table columns include a

forum (community) name, the user name of the pos-

ter, the post date, the title of the discussion thread,

and the post text.

From these data, the analyst would like to analyze

the social networks of the individual communities. She

begins by importing the data table (a large comma-

separated values (CSV) file) into Orion. The table and

its columns are displayed in the Schema Viewer in

Figure 1(a).

Next, she must define the entities of interest that

might form the nodes of her graph. Currently, these

entities reside implicitly as values within the table. The

analyst right-clicks the username field and selects

‘‘Promote’’ in the resulting context menu. This opera-

tion causes all username values to be extracted from

the table: a new table is constructed with one row for

each unique user and the username field in the origi-

nal table is replaced with a foreign key referencing the

new table. As the analyst wishes to model a social net-

work based on co-participation within a discussion

114 Information Visualization 13(2)



thread, she similarly promotes the thread_id field as an

entity of interest.

The analyst would now like to construct a social

network among users. She drags the id field (the pri-

mary key) from the username table and drops it on the

Linker interface in the center of the Orion window

(Figure 1(b)). The interface allows analysts to specify

desired source and target node types. In response,

Orion calculates all feasible network definitions involv-

ing username entities as nodes (Figure 1(c)). In this

case, there is only one feasible result: linking users by

shared threads. Should the analyst wish to consider

alternatives, she could promote other entities (e.g.

individual forums).

When the analyst clicks the check box to include the

linking path, Orion responds by showing a preview of

the resulting graph (Figure 1(d)). Orion previews

include both a list of tables that will be generated and

an inspector for individual table values. For now, the

analyst would like to limit her exploration to a single

community. She drags the forum field from the Schema

Viewer to the Filter region of the Linker; she then

selects the ‘‘Asthma’’ forum using the resulting search

box (Figure 1(f)). The preview updates in turn.

Satisfied, the analyst clicks the ‘‘Create Network’’

button to add the network to the data set; the Schema

Viewer updates with a new edge table containing links

between all posters to the ‘‘Asthma’’ forum who have

posted to the same thread; by default, edge weights

indicate the number of shared threads between two

users.

By right-clicking the ‘‘Asthma’’ edge table, the ana-

lyst reveals additional options. She can choose to

visualize the network using both matrix and node-link

diagrams. In a matrix overview (Figure 2(a)), the dis-

joint structure of the community becomes evident,

which suggests that newcomers arrive into the com-

munity, ask a question, and it gets handled by one of a

handful of leaders. This also suggests that the commu-

nity may serve as an ‘‘answer mill’’ rather than a place

of prolonged discussion. The analyst can dig deeper

by filtering the visualization to only show a highly

active cluster and pivots to a node-link visualization

(Figure 2(b)). Here, with nodes sized by their post

count and colored according to their betweenness cen-

trality, the analyst can focus on specific nodes of inter-

est for further analysis.

Individual tables can be inspected and visualized

using bar or scatterplot charts. Each visualization also

supports interactive filtering controls. After filtering

Figure 1. The Orion user interface, consisting of (a) a schema viewer for manipulating data tables and (b) a linker
interface for creating network models. Analysts drag-and-drop desired node types to the linker and Orion responds with
(c) a table of possible linking paths. (d) The preview display shows the resulting network data. Analysts can also specify
(e) aggregation, (f) filtering, and (g) splitting (subdivision) criteria.
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the graph to highlight interesting patterns, the analyst

can save the filtered edge table as an additional entry

in the Schema Viewer. The analyst can also compute

statistics, including node degrees, betweenness cen-

trality, and clustering coefficients. Statistical operators

add additional columns to the implicated edge and/or

node tables.

Now the analyst would like to assess the effects of

using a different network model. The current model

includes edges connecting all posters to the same

thread. What happens if instead thread respondents

are connected only to the thread initiator? The analyst

follows the same modeling path as before, but this

time adds a join predicate: she right-clicks the linking

path of the network and chooses to filter how the ohc

table is linked to itself. In these particular data, a pos-

ter has a post_id of 0 if they initiated the thread and a

post_id greater than 0 if they responded to the thread.

As these data characteristics are specific to this partic-

ular community data, the analyst enters a customized

formula in the resulting dialog: INT1(‘‘post_id’’) == 0

&& INT2(‘‘post_id’’) . 0.

The formula ensures that the source node always

corresponds to the thread initiator and that the target

node is a respondent. The analyst creates this network,

computes betweenness centrality values, compares

Figure 2. Orion visualizations of online health communities. (a) A sorted matrix view of an online asthma forum. A few
central leaders divide up responses among incoming questions. (b) Node-link diagram of highly active cluster of the
same forum. (c) Plot of betweenness centrality values for two different network models, sized by number of posts. The
models have similar centrality distributions.
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values for the two models in a scatter plot (Figure

2(c)), and notes a high degree of correlation. She deci-

des to proceed with the simpler model connecting only

initiators to respondents.

The analyst would now like to start comparing the

various health communities. She revisits her previous

steps, but instead of filtering the forum field, she drags

it to the Split region. The preview display then shows

entries for multiple networks—one for each forum.

Upon completion, these networks are grouped together

within a subtree of the Schema Viewer. Context menus

for the grouping element enables batch invocation of

statistics for all contained networks (see Figure 13 for

an example). The analyst can now continue analyzing

the diverse characteristics of health communities.

UI design

The previous scenario illustrates a subset of the model-

ing and visualization functionality supported by Orion.

We now describe the UI components in detail. Along

the way, we outline additional functionality, such as

the ability to merge multiple sets of edges and con-

struct ‘‘rollup’’ graphs via node aggregation.

Schema viewer. The Schema Viewer (Figure 1(a))

provides an overview of all data tables in the current

data set and supports data manipulation. Source data

tables and generated edge tables are indicated by icons.

Table attributes are displayed using icons indicating

their data type, with special annotations for primary

and foreign key fields. Context menus enable analysts

to rename and remove both tables and columns, create

derived columns using an expression language, specify

primary keys, and promote values in one or more col-

umns to new node tables. Analysts can also access sta-

tistics and visualization options via context menus.

Drag-and-drop interactions allow analysts to specify

foreign key relations (by dragging a field on to a pri-

mary key with a matching type), import data (by drag-

ging external data files from the operating system), and

query for network models (by dragging fields to the

Linker interface).

Link specification. The Linker interface (Figure 1(b))

is the primary means of defining networks. Analysts

start by dragging desired node types to fields for source

and target nodes. Orion responds by computing the

possible linking paths between the source and target

nodes and displays the results in a table. Users can

select the resulting paths to include those edges within

the resulting network model.

Filtering. Analysts can drag-and-drop fields to spe-

cify filtering criteria (Figure 1(f)). Filters can be

created for any table involved in the network. Orion

generates dynamic query widgets—selection lists and

range sliders—based on the data type. Corresponding

predicates are then applied during network construc-

tion to limit the nodes and edges included in the final

graph. In addition to single-table predicates, analysts

can specify filtering criteria directly on joins. Filterable

joins are presented in a context menu when an analyst

right-clicks a linking path. Currently, Orion only sup-

ports user-defined join predicates specified as Java

code statements.

Splitting. An alternative to filtering is to split a net-

work into a collection of subgraphs. Examples include

inspecting time slices and splitting on categorical vari-

ables (e.g. health forums). To specify subdivision cri-

teria, a user first drags a node or edge field to the Split

region (Figure 1(g)). Orion then displays a widget

enabling further parameterization (Figure 3). Networks

generated by splitting appear in the Schema Viewer as

grouped collections that support batch operations.

Orion supports splitting by categorical variables to

create separate networks that isolate a given node or

edge attribute value. For quantitative and temporal

attributes, users can specify window functions; both

sliding windows (which sequentially cover a domain)

and anchored windows (which extend from fixed ref-

erence bounds) are supported. Of course, not all such

splits are useful: naively splitting on a node’s primary

key results in a collection of singleton graphs. In this

special case, Orion instead interprets the split as a

request for subgraphs centered at each node and pro-

vides a graph distance control. Analysts can extract all

nodes and edges within a specified graph distance to

isolate egocentric networks. For example, a distance of

1.0 includes all neighbors, a distance of 1.5 includes

all neighbors and edges between them, a distance of

2.0 includes all nodes within two hops, and so on.

Rollup. When specifying desired node types via

drag-and-drop, typically the primary key of a node

table is used. If analysts instead drag-and-drop a non-

key field, an aggregated network will be constructed

that uses the unique field values as individual nodes

(cf. PivotGraph7). The underlying nodes are grouped

according to the requested field; edges between groups

are tallied to provide an aggregate representation of

the underlying graph.

Multiple edge sets. By selecting multiple linking

paths, Orion allows analysts to construct networks with

multiple edge sets. When multiple paths are selected,

the linking interface enables controls for choosing an

aggregate function for merging edge sets (Figure 1(e));

options include basic logical (or, and) and arithmetic

(count, sum, product) operations. For arithmetic
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operations, analysts can also provide numerical weights

for each edge set.

Preview and confirmation. As analysts manipulate

settings within the linker display, a preview panel

updates in response (Figure 1(d)). Analysts can review

the number and size of all tables generated and inspect

the values of individual tables. Once an analyst is satis-

fied with the linking definition, they can click the

‘‘Add Network’’ button to add all resulting tables to

the Schema Viewer.

Visualization. Orion also supports visualizations: table

displays, basic data graphics (bar and scatterplot charts),

node-link diagrams, and matrix views (see Figure 2).

Visualizations are shown in a separate window with dif-

ferent visualization types accessible via tabbed panes.

These windows include a schema viewer showing only

the data tables implicated in the current visualization.

Orion uses the Java implementation of the Protovis spe-

cification language33 to generate these visualizations.

Analysts can parameterize a display using filtering,

sorting, zooming, and visual encoding controls. Node-

link diagrams use a force-directed layout algorithm

based on a physical simulation. Matrix rows and col-

umns can be sorted by node attributes or by linkage to

hunt for patterns within the data. Layout and sorting

facilities are included among the analytic operators

described in section ‘‘Network analysis.’’ As our interac-

tive data transformation methods constitute the primary

contributions of this article, we leave consideration of

additional visualization facilities to future work.

Network definition and extraction

Having introduced the Orion interface, we now discuss

some of the underlying algorithms enabling interactive

network modeling. While relational tables provide a

flexible model for representing data, network extraction

involves creating linking queries that regularly include

one or more join operations. As a result, defining net-

works via a query language such as SQL can be tedious

and error-prone. To simplify the process, Orion models

the connections among data tables and analysts request

networks simply by specifying the desired node types.

The system then enumerates the possible network defi-

nitions, from which an analyst can choose.

We describe the steps of this process in the follow-

ing subsections. First, we construct a linking graph that

models the foreign key relations among tables. In

response to user queries (i.e. desired node types), we

then run a search algorithm over this graph to identify

valid linking paths. Linking paths are then translated

into relational algebra statements for extracting net-

work edge tables.

Linking graph construction

To aid network definition, Orion builds a linking graph:

a data structure that supports user queries over possi-

ble network models. Nodes within a linking graph cor-

respond to data table fields (columns); primary key

fields are assumed to represent a specific node type.

Edges in the graph represent relationships among

fields (e.g. foreign key references) that might be used

to define a network among node types. Given input

schemas for a set of data tables, Orion constructs a

directed graph containing three types of edges:

1. Key reference (R) edges link all primary and foreign

keys representing the same node type.

2. Intratable (T) edges link all foreign keys within a

table. The edges represent potential linking paths

between node types.

Figure 3. Network splitting operations supported by Orion: (a) subdivision by category, (b) sliding windows, (c) anchored
windows, and (d) subgraph extraction.
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3. Conjugate (C) edges link a foreign key F of one

node type to a primary key P of a different node

type if and only if the table containing F has an

additional foreign key that references P.

While the first two edge types are straightforward,

conjugate edges merit further explanation. These edges

represent paths in which one can join a linking table with

itself to form a unipartite graph—a process analogous to

multiplying a bipartite adjacency matrix by its transpose.

Key reference (R) and intratable (T) edges are bidirec-

tional; conjugate (C) relationships are unidirectional,

from a foreign key to a primary key with a different node

type. Figure 4 shows the schema and linking graph for

publication data extracted from the Association of

Computing Machinery (ACM) digital library.

Automated key finding. To facilitate accurate key

assignments—and thus accurate linking graph

models—Orion includes mechanisms to automatically

infer single-column primary and foreign key relations.

To identify primary keys, the algorithm finds columns

with distinct elements in each row and then ranks the

candidates according to data type (e.g. integers are

preferred to strings or dates) and position (left-most

columns—those with a minimal index position—are

preferred). The top-ranking result for a table is then

chosen as the key, though users are free to override

this choice within the interface.

For a selected primary key, Orion identifies candi-

date foreign keys by first finding all table columns with

a matching data type. It then scores each candidate

using a logistic regression classifier. The regression

model includes the following features, where P is the

primary key column, F is the candidate foreign key col-

umn, dist returns a set of distinct column values, and

lcs returns the longest common subsequence within

two strings

fa =
jdist(P)ndist(F)j
jdist(P)j

fb = 1� jfi : Fi 2 dist(P)gj
jFj

fc =
jlcs(name(P), name(F))j

max(jname(P)j, jname(F)j)

fd =
jlcs(table(P), name(F))j

max(jtable(P)j, jname(F)j)

In other words, candidate keys are classified using

features concerning (a) how many distinct primary key

values occur in the candidate column, (b) how many

elements in the candidate column occur in the pri-

mary key column, (c) the similarity of the column

names for the primary and candidate keys, and (d) the

similarity of the primary key table name to the candi-

date key column name. We trained our classifier on a

corpus of test data, including all examples in this arti-

cle. Our classifier achieves an accuracy of 98.9% using

cross-validation tests. More details about our classifi-

cation approach, including additional features and

evaluation methods, are provided in Appendix 1.

Linking path search

Given a linking graph and desired source and target

fields (node table primary keys), Orion searches the

graph to identify valid linking paths. These paths can

be translated into relational algebra statements (e.g.

projections and joins) to create a network edge table.

Orion’s path-finding method (Algorithm 1) per-

forms a breadth-first traversal starting from the source

field. The traversal algorithm allows repeated visits to

a node but greedily prunes the search at each step by

testing the validity of candidate path segments. For a

given path segment path, we denote the most recently

added field by u, the previously added field by t, and a

newly encountered candidate field by v. All fields have

Authors

Id
LastName
FirstName

Institutions

Id
Name

Links

AuthorId
PubId
InstId
AuthorNum

Publications

Id
Year
Title
Type
Venue
Abstract

(R) Key Reference
(T) Intra-Table
(C) Conjugate

Figure 4. Schema and linking graph for publications data. Primary keys are italicized. Links are styled according to the
edge type; links without arrows are bidirectional (R and T edges). The graph is a data structure for finding all networks
involving a pair of node types.
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a corresponding base field indicating the node type:

primary key fields reference themselves, while foreign

key fields reference a primary key. With these defini-

tions in place, valid paths are defined by the following

conditions, which roughly correspond to the Boolean

variables a, b, c, d within Algorithm 1:

1. Excluding source and target fields, paths cannot

contain the same base more than twice.

2. The same base field cannot occur three times con-

secutively unless u and v are in the same table.

3. Three consecutive fields cannot be from the same

table, unless the third field is reached by a key ref-

erence edge (R).

4. A field reached through a conjugate edge (C) can-

not be added to a path unless (a) t and u are in

the same table and (b) t and v share the same base

field, which differs from that of u.

The algorithm returns a set of valid linking paths

with which an analyst can define a network model. To

simplify the results, the algorithm culls paths that are

identical to a previously found path if reversed. In

addition, Orion sorts the returned paths such that

shorter paths with less variation in base field types are

listed first.

Network extraction

Once an analyst has selected a set of desired linking

paths, Orion translates these paths into relational alge-

bra statements that when evaluated provide a network

edge table. Figure 5 provides examples of input

queries and the resulting linking paths and relational

algebra statements (using the data and linking graph

in Figure 4).

Mapping paths to relational algebra is straightfor-

ward. In most cases, each pair of fields (ignoring source

and target fields) maps to two columns of the same

table, with adjacent pairs related by an equijoin on the

shared inner field. The special cases are conjugate

edges, for which an encountered pair is instead joined

against itself, and ‘‘self-edges’’ within a table that result

in an odd number of path elements (e.g. tree data with

paths of the form T :P �!R T :F �!R T :P).

When an analyst selects a network definition, Orion

executes the resulting queries and constructs an edge

table with integer node indices (section ‘‘Data

model’’). Orion similarly turns filtering criteria speci-

fied in the UI into relational selection predicates that

are incorporated into the queries. If an analyst selects

multiple linking paths, Orion will construct multiple

edge tables. Orion then forms the union of these edge

tables; analysts can further specify aggregation func-

tions in the Orion UI to control if and how multiple

edge sets should be merged.

Orion workflow operators

In addition to transforming data, one goal of Orion is

to enable the construction of editable and reusable

analysis workflows. These workflows are realized in a

declarative language incorporating both relational

operators and network statistics. By mapping UI

actions into statements in this language, Orion sup-

ports not only data manipulation and visualization but

can also export reusable scripts that keep a record of

data provenance. In this section, we describe the oper-

ations supported by our language and how they can be

used to model and analyze network data.

Each Orion workflow task is an operator accepting

one or more named parameters. These operators mod-

ify a data set: a collection of named tables. A workflow

is simply a sequence of tasks. Figure 6 shows an exam-

ple workflow for the case study in section ‘‘Online

health communities.’’ Orion externally represents

workflows using a simple XML format. Table 1 sum-

marizes each of these operators.

Data import and export

Orion’s input/output operators read in data from dif-

ferent sources and write results in a variety of formats.

Algorithm 1 FindPaths(source, target)

maxOccurrences source= target?3 : 1

paths fg
queue new Queue(½source�)
While queue is not empty do

path dequeue(queue)

len length(path)

t  len \ 2?null : previous(path)

u current(path)

for all e 2 edges(u) do

v v : v 2 e ^ v 6¼ u

a jfn 2 path : sameBase(n, v)gj. maxOccurrences

b sameBase(t, u, v) ^ (len . 2 _ :sameTable(u, v))

c type(e) 6¼ R ^ sameTable(t, u, v)

d  type(e)=C ^:(sameTable(t, u) ^ sameBase(t, v))

if :(a _ b _ c _ d) then

newPath append(copy(path), v)

if v 6¼ target then

enqueue(queue, newPath)

else if reverse(newPath) 62 paths then

paths paths [ fnewPathg
end if

end if

end for

end while

return path
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The read operator imports data tables from external

sources such as delimited text files (e.g. comma- or

tab-separated values), relational databases, and

GraphML or Dot (GraphViz) network files. Network

files are translated into tables, typically one node table

and one edge table. For delimited text files, Orion

infers column data types based on their contents. The

write operator writes either individual tables or

extracted networks to a database or files in these same

formats.

Schema modification

Orion includes a handful of operators for modifying

table schemas. The rename operator renames tables

or individual columns. The key operator indicates that

a column serves as a primary key, while the references

operator assigns foreign key relations. Foreign key rela-

tions are particularly important, as they are used as the

basis for determining feasible linking paths. While

tables pulled from relational databases often have the

Query: Authors.Id×Publications.Id (ties between people and papers)

Authors.Id R−→ Links.AuthorId T−→ Links.PubId R−→ Publications.Id

⇒ πAuthorId,PubId(Links)

Query: Authors.Id×Authors.Id (social ties between people)

Authors.Id R−→ Links.AuthorId T−→ Links.PubId C−→ Authors.Id

⇒ πAuthorId,PubId(Links) �PubId=PubId πPubId,AuthorId(Links)

Authors.Id R−→ Links.AuthorId T−→ Links.InstId C−→ Authors.Id

⇒ πAuthorId,InstId(Links) �InstId=InstId πInstId,AuthorId(Links)

Figure 5. Example linking queries and results returned by Orion’s search algorithm. Linking path edges are annotated
by type: key reference (R), intratable (T), or conjugate (C) edges. Paths are mapped to relational algebra statements to
extract network edge tables.

Table 1. The Orion workflow language.

Operator Description

Read Import a data table or network.
Write Export data table(s) or network.
Rename Rename a field, table, or network.
Key Set primary key status for a field.
Reference Add a foreign key reference from one field to another.
Remove Drop a field, table, or network.
Derive Define a new field according to a user-defined function.
Rank Add sort indices ordered by field values.
Promote Extract field values to a new node table.
Link Extract a network defined by one or more linking paths.
Filter Filter nodes or edges of a network according to a predicate.
Subgraph Extract subgraph within a given distance of a set of focus nodes.
Split Segment a network by field values (e.g. categories, time slices).
Rollup Create an aggregate graph according to node field values.
Stats Compute a given network statistic and store as a new field.
Layout Compute spatial coordinates for nodes using a layout algorithm (e.g. force-directed placement).
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appropriate key relations defined in their schemas,

data in common formats such as CSV regularly lack

this metadata. To add this metadata, our key finding

algorithm (section ‘‘Automated key finding’’) generates

a sequence of key and references statements.

Table transformation

To aid the creation of network models, Orion provides

operators for manipulating single tables. The remove

operator simply drops a column or table. The derive

operator allows analysts to create new columns by

writing a user-defined function over existing columns.

Orion currently accepts user-defined functions as snip-

pets of Java code that are dynamically compiled at

run-time.

Ranking table rows. The rank operator adds a new

column containing rank-ordered integer indices. Rank

statements must include sorting criteria: one or more

fields to sort in ascending or descending order. The

sort order determines a set of nonrepeating indices.

Statements can also take group-by fields; each group

is then rank-ordered separately. The rank operator can

be used to create indices enabling nuanced join predi-

cates (e.g. the post_id field used in the scenario of sec-

tion ‘‘Usage scenario’’).

Promoting column values to node tables. Tabular data

often contain implicit linking relationships via values

embedded in a column. For example, a single table of

research grant awards might contain fields for a princi-

pal investigator (PI), a co-PI, and the institutions of

each. From these data, one may wish to form social

networks of researchers and/or institutions. To help

model such networks explicitly, Orion provides the

promote operator. Given one or more field names,

the promote operator first identifies and counts all dis-

tinct values in those columns and then populates a

new table with the schema (id, value, count). Values in

Workflow w = new Workflow();

w.add(Tasks.read("ohc") ......// load data file

...file("ohc.csv")

...type("csv"));

w.add(Tasks.promote("users") .// promote username field

...from("ohc")

...select("username"));

w.add(Tasks.promote("forums") // promote forum field

...from("ohc")

...select("forum"));

w.add(Tasks.link("cp") // create forum × forum network

...path("forums.id", "ohc.forum",

........"ohc.username", "forums.id")

...distinct(true));

w.add(Tasks.stat("cp") // calculate edge weight deviance

...field("dev")

...stat("edgeWeightDeviance"));

Figure 6. An example Orion workflow definition for the online health case study in section ‘‘Online health communities.’’
Here the workflow is shown as Java code; workflows can also be persisted using a simple XML format.
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the input table are replaced with foreign key references

to the new ‘‘promoted’’ table. This operation allows

analysts to extract implicit node types into explicit

node tables. Returning to the grants example, an ana-

lyst might promote the PI and co-PI columns to create

a new node table for people; the original table now

serves as a linking table defining a network among

people nodes.

Network modeling

At the core of the Orion language are network creation

operators.

Network definition. Given a set of linking paths as

input, the link operator extracts a network (edge

table) according to the process described in section

‘‘Network definition and extraction.’’ All input linking

paths must have the same starting and ending fields. If

multiple linking paths are provided, the link operator

will construct a single edge table that is the union of

the per-path edge tables. The resulting table includes

a path_id column, indicating which linking path gener-

ated a link. If an optional aggregation parameter is

provided, the operator will generate a final edge table

by applying an aggregate function over a group-by of

the source and target columns; the aggregate values

then become the edge weights.

The link operator also accepts optional projection

and filtering parameters. Projection parameters consist

of node or linking table columns to include across

joins (as if included in a SQL SELECT clause). Filter

parameters are name–value pairs of table names and

predicate functions. Both single-table predicates (for

filtering either node or linking tables) and two-table

predicates (for join predicates on linked tables) are

accepted. The link operator also accepts Boolean para-

meters for suppressing self-links in unipartite graphs

and for ensuring that only distinct edges are consid-

ered in linking tables. The latter enforces preaggrega-

tion of linking tables.

Subnetwork extraction. Once a network has been cre-

ated, Orion provides operators for extracting sub-

graphs. For example, an analyst may want to compare

time slices of an evolving network or various egocentric

networks extracted from a larger social graph. The fil-

ter operator creates a filtered edge table based on a set

of edge and node predicates. Edges are removed if a

node predicate returns false for any incident node.

Given a set of ‘‘focus’’ nodes, the subgraph opera-

tor returns a subgraph containing all edges within a

specified minimum distance. Orion measures graph

distance by counting hops or summing edge weights.

In the future, we plan to also support the degree-of-

interest extraction method introduced by Van Ham

and Perer.10

Orion also provides iterators that enable repeated

invocation of an operator over a sequence of parameter

settings. Iterators are useful for performing batch oper-

ations, such as repeated filtering or subgraph extrac-

tion. We use iterators to implement a split operator

that can segment networks according to categorical or

numerical fields. For numerical data columns, analysts

can choose to split a network using a sliding window

(e.g. to create separate time slices of a network) or an

anchored window (e.g. to show the evolution of a net-

work over time) while specifying the bounds of inter-

est. Iterators also enable batch statistics calculation

(see section ‘‘Network analysis’’).

Network aggregation. At times an analyst will be more

interested in the aggregate properties of a graph than

in leaf-node details; given a social network, she may

wish to view the aggregate connections among genders

or cities. The rollup operator aggregates edges accord-

ing to specified properties of the nodes.7,12 The rollup

operator generates an aggregate edge table and node

tables for the node attributes.

Network analysis

Orion additionally provides network analysis algo-

rithms. The stats operator computes one or more sta-

tistics of a network and stores the resulting values in

the corresponding node or edge tables. The statistics

operator is modular, allowing user-defined functions

to be added to the workflow language. Currently, these

functions must be written in the Java programming

language and conform to a provided interface defini-

tion. Supported statistics include in-degree, out-degree,

betweenness centrality, eigenvector centrality, clustering

coefficient, edge weight asymmetry, edge weight deviance,

community identification, and linkage-based sorting.

While many of these metrics are common to social

network analysis, a few deserve special mention. The

edge weight asymmetry and deviance measures are

inspired by Van Ham et al.’s Honeycomb12 system.

The former is simply the logged ratio of edge weights

between corresponding antiparallel edges in a directed

graph. The latter calculates the amount an edge weight

deviates from the expected value if one assumes a uni-

form random distribution of total weight across the

cells of the adjacency matrix. Deviance can help iden-

tify edges with unexpectedly strong or weak strengths,

particularly in dense aggregated networks.

Community identification is performed via a greedy

hierarchical clustering optimizing Newman’s
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modularity metric.34 Linkage-based sorting provides

an integer sort order of nodes that attempts to mini-

mize the distance among connected nodes. We

approximate this objective by seriating the nodes using

the cluster tree constructed by the community identifi-

cation algorithm.35 The resulting ordering is particu-

larly useful for visualization purposes, such as

permuting the rows and columns of an adjacency

matrix diagram to reveal clusters.4

The layout operator is similar to the stats operator

but instead computes spatial coordinates for subse-

quent layout in a visualization. This operator currently

supports force-directed layout only.

Summary

In summary, the transformations supported by Orion

are realized in a declarative workflow language. Saved

Orion sessions are simply XML-serialized versions of

this workflow and so can easily be edited or reviewed

directly in a text editor. While the Orion interface

enables rapid specification of these workflows, we have

also found that programmatic use of the workflow lan-

guage (as in Figure 6) has greatly aided data analysis

in our research groups.

Case studies

We now present a collection of case studies illustrating

how Orion has been applied to conduct network analy-

ses in multiple domains.

Online health communities

The scenario in section ‘‘Usage scenario’’ introduced

an analysis of online health communities. In addition

to comparing the social networks of individual forums,

our collaborating analyst is also interested in exploring

the connections between communities. Might cross-

posting behavior provide insights into the comorbidity

of medical conditions? We demonstrate such a scenario

using the Orion UI.

To assess such questions, the analyst generates a

network in which the nodes correspond to discussion

forums and edge weights indicate the number of dis-

tinct users who have posted in both forums. To con-

struct this network with Orion, the analyst promotes

both the username and the forum fields to node tables.

The analyst then requests a network with forum nodes

as both the source and the target. Orion suggests the

desired result: linking forums by shared users.

The analyst then runs the edge weight deviance sta-

tistic to calculate the degree to which edge weights vary

from the expected value (assuming a uniform random

distribution). The resulting matrix diagram is shown

in Figure 7, with cells colored by deviance.

By inspecting both this matrix view and the sorted

edge table, the analyst has flagged a number of unex-

pected connections. Some connections appear to indi-

cate possible data errors, for example, the hearing loss

forum has unexpectedly strong connections to many

other forums. Other strong connections indicate inter-

esting co-occurrences (e.g. cold/flu and stress, ear/

nose/throat problems, and heart disease) or common

misdiagnoses (e.g. lupus and lyme disease). Orion has

enabled her to make these observations in a matter of

minutes. The analyst is now following up on these

results, for example, by correlating them with external

comorbidity data.

Electronic medical records

In another case study, Orion is used to model the pro-

gression of a disease using data from EMR. The goal of

constructing such networks is to allow medical experts

to better understand the onset of symptoms in patient

populations, hopefully resulting in speedier diagnoses

and treatments. In this case study, a team consisting of

a computer scientist (the analyst) and four medical

experts (one cardiologist, two medical scientists who

were formerly emergency room doctors, and one epide-

miologist) construct a network from over 3.3 million

clinical notes involving 50,000 patients over 7 years to

model the evolution of heart failure (HF).

The analyst begins by loading the data tables using

the File menu in the Orion UI. The analyst imports

an EMR table, where each row corresponds to a clini-

cal event for an associated patient. The EMR table

only contains IDs of events and patients, so the analyst

also imports a symptomDefinitions table that contains

associated metadata, such as the symptomName and

symptomDate. In this data set, all dates are aligned by

the diagnosis of HF, so negative dates imply events

before a patient was diagnosed with HF and positive

dates imply events after diagnosis. The analyst also

imports an additional patient metadata table,

patientDefinitions, that contains the patientType, which

defines whether it is a case patient with HF or a con-

trol patient without HF.

The analyst then promotes both the patientIDs and

the symptomIDs fields to node tables. However, since

the symptom metadata is located in a separate table,

the analyst creates a reference from the symptoms table

to the symptomsDefinitions table using Orion’s auto-

matic key-finding algorithm. The analyst similarly cre-

ates a reference between patients and the

patientDefinitions table.

The analyst now wishes to create a network of

symptoms when they co-occur among different
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patients. The analyst also demands that the edges of

this network have a weight equal to the number of

patients that experienced such a co-occurrence. To do

this, the analyst requests a network with symptom

nodes as both the source and the target and selects the

option to only count distinct patients when tabulating

edge weights. Orion then invokes its path-finding

method (Algorithm 1) and presents the only path

found: ½symptoms:id ! EMR:symptomID! EMR:
patientID! symptoms:id�. The analyst approves of this

path and generates the network. For each edge in the

symptomNetwork, a new count field is automatically cre-

ated which allows the analyst to keep track of the

number of unique patients who share the same co-

occurrence of symptoms.

However, the analyst is only interested in how the

symptoms co-occur up until the patient diagnosis and

so filters the network to ensure that all date values are

negative. The analyst then runs the linkage-based

order statistic to obtain a sort order for a matrix visua-

lization that minimizes the distance among connected

nodes. The resulting networks (unfiltered and filtered)

are then exported from Orion and visualized using

MatrixFlow,36 shown in Figure 8.

Temporal network analysis. Having generated an over-

view, the analyst now wants to understand how the co-

occurrence network of symptoms changes over time.

Based on clinical background knowledge, the analyst

Figure 7. Matrix view of connections between online health forums. Edges are weighted by the number of distinct
cross-posters. The cells are then colored according to edge weight deviance; green cells indicate values greater than
expected and red cells indicate values lower than expected.
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wants to focus on 18 months leading up to the diagno-

sis of HF. Using Orion, analysts can model temporal

networks by using the Split operator to subdivide net-

works into time windows. The analysts choose to split

by symptomDate, setting the lower bound to 18 months

before diagnosis and the upper bound to the date of

diagnosis. The analyst performs two different types of

splits using 3-month intervals: a binned network with

sliding time windows and a cumulative network with

anchored time windows, as shown in Figure 9.

Ultimately, the analyst decides to generate separate

networks for different patient cohorts. In this data set,

there are three different types of patients: control

patients who do not have HF, HF patients with pre-

served ejection fraction (HFpEF), and HF patients

with reduced ejection fraction (HFrEF). This is par-

ticularly interesting to the analyst because there is cur-

rently a research debate about whether HFpEF and

HFrEF should be considered the same or different

disease. The analyst then splits the network by the

patientType field. The three different patient cohorts

are shown with anchored time windows in Figure 10.

Upon analyzing the networks generated using

Orion, four medical experts confirmed novel temporal

patterns of the progression of heart disease. They

found that Orion rapidly enabled data exploration in

ways that previously were prohibitively difficult; prior

attempts required writing custom network modeling

code for each new hypothesis. In fact, Orion’s pro-

vided features (e.g. splitting) sparked some of the

research questions that were explored. The experts are

optimistic that such network analyses can eventually

help clinicians make earlier diagnoses, due to the large

variability in diagnoses among patients. The ability to

quickly compare and contrast different patient net-

works also provided novel evidence for the HFpEF

and HFrEF debate, as a similar temporal pattern is

observed in both cohorts, which suggests that despite

the pathophysiological differences, both HF types

seem to develop the same co-occurrence patterns. The

results of this analysis have led to a publication in a

medical informatics conference,36 as well as a pending

publication in a medical journal.

Multivariate network analysis. Inspired by the results

of analyzing the symptoms network, the medical

experts became curious about how symptoms interact

with diagnoses, medications, and lab tests. In

response, the analyst creates a co-occurrence network

with the same approach described above but instead

uses an enhancedEMR table, where each row corre-

sponds to a clinical event for a specific patient (symp-

toms, diagnoses, medications, or lab tests). Each event

has eventType and eventDescription metadata. Akin to

the technique above, the analyst requests a network

with event nodes as both the source and the target and

selects the option to only count distinct patients when

tabulating edge weights. As shown in Figure 11, the

resulting network is then exported from Orion and

styled using D337 for publication. The network was

further filtered using D3 to show only the most com-

mon event co-occurrences. All nodes in the image are

either diagnoses or symptoms. The other types of

events (lab tests and medications) do not co-occur

often enough to be present in this graph.

Surprised by the domination of symptoms and

diagnoses, the analyst wonders how certain types of

events co-occur with each other on the previous unfil-

tered network. To find out, the analyst uses Orion to

create an aggregate network, where nodes represent an

eventType and edges are weighted with how many

times an eventType co-occurs with another eventType.

By requesting a network with eventType nodes as both

the source and the target, Orion generates a rolled up

aggregate network. In Figure 12, the network is ren-

dered as a matrix where each cell is colored based on

its edge count.

Figure 8. Matrices of co-occurring symptoms extracted
from electronic medical records of patients with HF. The
filtering constrains the symptoms to only those that
appear prior to HF diagnosis.
HF: heart failure.
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The medical experts are now in the process of mak-

ing sense of the multivariate analysis in a clinical con-

text. The rapid ability to generate networks with

temporal and multivariate features shows promise of

validating several features critical for disease diagnosis.

The medical collaborators believe that Orion’s expres-

siveness may help them gain a better understanding of

heart disease.

Academic production and collaboration

We are also using Orion to explore academic production

and collaboration networks, for example, section

‘‘Linking graph construction’’ discusses data extracted

from the ACM digital library. To inspect the career prog-

ress of computer scientists, we use Orion to construct a

social network based on co-publication. Using Orion’s

Figure 9. Matrices of co-occurring symptoms, split by (a) anchored and (b) sliding windows of 3-month intervals.

Figure 10. Matrices of co-occurring symptoms, split by an anchored time window and patient cohort.
HF: heart failure; HFpEF: HF patients with preserved ejection fraction; HFrEF: HF patients with reduced ejection fraction.
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subgraph extraction facilities (Figure 13), we define

social networks over increasing periods of time (e.g. first

all publications up to 2000, then 2001, and so on). We

then batch compute betweenness centrality scores for

each extracted network. As Orion enables easy data

export, we subsequently loaded the data into Tableau for

further analysis, leading to the plot in Figure 14.

Orion’s flexibility also enables assessment of other

models. For example, we have constructed the net-

work of all researchers who have published in the same

venue (by promoting and linking on the publication

venue) within the same year (by specifying a join pre-

dicate enforcing matching years).

The ACM publication data contribute to a larger

analysis initiative with social scientists at the first

author’s university. The scientists are studying aca-

demic collaboration and have collected multiple data

sets indicating links among university faculty. In addi-

tion to publication databases, the data include depart-

ment and PhD committee memberships and co-PI

relations on grants. These heterogeneous edge sets can

be combined and weighted in any number of ways to

form a collapsed network. We are using Orion’s edge

aggregation features to create and compare network

models built from heterogeneous linking data.

Figure 11. A network of the most commonly co-occurring clinical events extracted from electronic medical records of
patients with heart disease.

Figure 12. An aggregate network of clinical event types.
The network was transformed using Orion’s rollup
operator, then exported, and visualized with D3.
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Software development on GitHub

Finally, we have used Orion in collaboration with com-

puter scientists studying global development patterns

in open-source software. The data under investigation

come from GitHub, a Web service that hosts open-

source projects. Using the GitHub Web application

programming interface (API), the researchers have

Figure 13. Using Orion to subdivide an ACM co-authorship network by publication date. The Split region on the lower
right provides controls for defining a filtering window; the Preview pane in the center lists all resulting tables. When the
networks are created, the Schema Viewer on the left groups the results to support batch statistics calculation.

Figure 14. Time-sliced betweenness centrality scores for researchers in the ACM digital library. Centrality scores are
normalized per year. The data were generated in Orion and then exported to Tableau.
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collected over 1,000,000 commits and 500,000 expli-

cit ‘‘follower’’ connections among roughly 50,000

users. In addition, each user’s location has been geo-

coded according to a self-reported location string and

then mapped to near-by major metropolitan areas (see

Heller et al.38 for more details).

Using Orion, we can quickly generate and analyze

networks extracted from these data. For example, we

have constructed social networks based on commit

history: a link is included between two users A and B

if B makes a commit to the same repository immedi-

ately after A. We can specify this network in Orion by

linking users via a table of commits. We have as input

two tables: one for users and another for commits.

The commit table includes the date, project name,

and the user (as a foreign key). First, we promote the

project (repository) name to its own table and then

link users according to a shared repository. We limit

links to temporally adjacent commits by first applying

a rank operation based on the commit date and then

adding a join predicate that ensures that only adjacent

ranks are included in the resulting network.

We can also construct networks of ‘‘who follows

whom’’ by linking users using a table of extracted fol-

lower relations. By requesting the user location attri-

bute as a node type (rather than the user id), we

construct an aggregated graph among major cities,

with edge weights indicating the number of connec-

tions between users in those cities. We can then apply

edge weight asymmetry and deviance statistics to

examine differences among various locales. Figure 15

shows selected matrix views from this analysis (origi-

nally published in Heller et al.38). For example, in

Figure 15(c), we see that Paris and Tokyo each have

Figure 15. Matrix diagrams resulting from an Orion analysis of GitHub, a hosting service for open-source software.
(a) Raw counts of follower links between cities, sorted by geographic proximity (column nodes ‘‘follow’’ row nodes on
GitHub). (b) Follower links colored and sorted by asymmetry. (c) Followed links colored by deviance from expected
value and sorted geographically.
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many fewer incoming ‘‘followed’’ links than would be

expected if links were assigned randomly and that San

Francisco consistently receives a surplus of ‘‘followed’’

links. While these particular images have been stylized

for publication using Protovis,39 the underlying analy-

sis can be performed completely within Orion.

Conclusion and future work

This article introduces Orion, a system for interactive

modeling, transformation, and visualization of network

data. By providing a unified model, workflow lan-

guage, and graphical UI for iterative network manipu-

lation, the construction and comparison of networks

empower analysts to be more exploratory and flexible

in their analysis. Through case studies involving online

health communities, academic collaboration networks,

and global software development, we demonstrate how

Orion supports the visual analysis of multidimensional

heterogeneous networks.

While our case studies illustrate how Orion can be

applied to real-world analysis tasks, each study was

conducted in the context of a collaboration between

the analysts and ourselves. A necessary next step is to

evaluate how analysts use Orion without external assis-

tance. User studies with representative tasks and parti-

cipants would certainly help surface usability issues

and inform iterative design. However, we believe the

most important test will come from analysts indepen-

dently applying Orion in their own work.

As analysts gain the flexibility to create new models

and transformations of network data with Orion, a

critical need arises for better methods to preview and

compare the constructed networks. While Orion pro-

vides capabilities to support these tasks, we believe

that providing even more sophisticated visual and sta-

tistical techniques to summarize the similarities, differ-

ences, trends, and outliers of the resulting networks is

an area ripe for future research. Additionally, while

Orion provides great power for analysts to model net-

works that match their hypotheses, the vast number of

possibilities to construct a network may seem daunt-

ing. An interactive visual representation of Orion’s

linking graph may assist users in understanding and

specifying network models. Future work might also

provide users with proactive automatic suggestions to

help uncover network models with interesting and

meaningful patterns.
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Appendix 1
Foreign key identification

To aid the construction of linking graphs, Orion

includes facilities for automatically identifying foreign

keys. Given a primary key as input, Orion first identi-

fies candidate foreign keys by finding all table columns

with a matching data type. It then scores each column

using a logistic regression classifier. In this section, we

discuss our training data, feature selection, and result-

ing classification performance.

Training data: multi-table database corpus. To train

our classifier, we first constructed an annotated corpus

of multitable databases. The corpus consists of a col-

lection of tables and corresponding primary and for-

eign key designations. We included all the data sets

discussed in this article, as well as other network and

tree data sets. We collected additional data from the

Web, such as the contents of the University of

Washington XML data repository. We wrote a pro-

gram that analyzes the structure of each XML file in

this repository and extracts unique entities (elements

with multiple attributes) into their own relational

table. The output is a set of data tables and key

relationships.

Our corpus comprises 9 data sets with a total of 50

data tables and 283 unique data columns. From these,

we extracted 467 feasible primary key/foreign key pairs

by matching primary key columns with all other col-

umns of the same data type within a data set. We

manually annotated each candidate key to note if it is

a true foreign key. Of the 467 candidates, 83 are for-

eign keys and 384 are not.

Foreign key classification. We used our annotated cor-

pus to train a logistic regression classifier. We chose

logistic regression due to its interpretability, applicabil-

ity to ranking in addition to classification, and its good

performance on our data. We expect that a number of

other classification approaches (e.g. support vector

machines) would produce comparable results. We

experimented with a variety of features and interaction

effects. Here, we present the model that provided the

best classification performance while minimizing the

Akaike information criterion (AIC) model selection

score, which balances model fit against the number of

model parameters.
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Table 2 presents our feature definitions and the

resulting regression coefficients when trained on the

entirety of our corpus. Within our feature definitions, P

corresponds to a primary key column and F to a candi-

date foreign key column. We also use the following

functions: dist returns a set of distinct column values,

lcs returns the longest common subsequence within two

strings, name returns the name of a column, and table

returns the name of the table containing a column.

Our features provide normalized measures of the

coverage of values between two columns and of simila-

rities among names. Feature fa counts how many dis-

tinct primary key values occur in the candidate foreign

key column. Feature fb concerns how many elements

in the candidate column occur in the primary key

column. Feature fc measures the similarity of the col-

umn names, while feature fd measures the similarity of

the primary key table name to the candidate key col-

umn name. The interaction terms fb � fc and fb � fd
penalize candidates that have similar names to a pri-

mary key but do not provide an adequate coverage of

values. Finally, feature fid discounts naming similarity

when columns are simply named ‘‘id,’’ a common

occurrence in many database schema designs.

Performance. To test the performance of our classi-

fier, we compared the predicted values of the model

with ground truth annotations using a cross-validation

method. For each individual data set (table collection),

we tested the accuracy of a classifier trained using the

other eight data sets. Thus, in each round, we tested on

holdout data not included in the training process.

Across all cross-validation folds, we find that we

correctly classify 462/467 (98.9%) candidate keys.

Examining the five misclassifications, we see that one

is a false-positive and four are false-negatives. The

false-positive is caused by a significant (but mislead-

ing) degree of name similarity. For the false-negatives,

there is little naming similarity and only partial cover-

age of primary key values by the foreign key. As a

result, the regression score fails to cross the threshold

for positive classification. However, when ranking can-

didate foreign keys by their regression score, these

false-negatives are rated highly within their respective

data sets—just below any true positives. As a result,

the Orion UI can still surface these pairs as top-ranked

suggestions, even though the classifier fails to correctly

flag the candidates as true foreign keys.

Table 2. Logistic regression coefficients for a foreign key
classifier.

Feature Coefficient

Intercept 223.737***

fa =
jdist(P)ndist(F)j
jdist(P)j 21.559

fb = 1� jfi : Fi 2 dist(P)gj
jFj 19.187*

fc =
jlcs(name(P), name(F))j

max(jname(P)j, jname(F)j) 28.498**

fd =
jlcs(table(P), name(F))j

max(jtable(P)j, jname(F)j) 27.742**

fb � fc 230.809*
fb � fd 224.871*
fid = name(P) = 00id00 ^ name(F) = 00id00 233.532

Statistical significance: *p \ 0.05, **p \ 0.01, ***p \ 0.001.
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