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Abstract 

Objective: To develop a visual analytic system to help medical professionals improve disease diagnosis by providing 
insights for understanding disease progression. 

Methods: We develop MatrixFlow, a visual analytic system that takes clinical event sequences of patients as input, 
constructs time-evolving networks and visualizes them as a temporal flow of matrices. MatrixFlow provides several 
interactive features for analysis: 1) one can sort the events based on the similarity in order to accentuate underlying 
cluster patterns among those events; 2) one can compare co-occurrence events over time and across cohorts 
through additional line graph visualization. 

Results: MatrixFlow is applied to visualize heart failure (HF) symptom events extracted from a large cohort of HF 
cases and controls (n=50,625), which allows medical experts to reach insights involving temporal patterns and  
clusters of interest, and compare cohorts in novel ways that may lead to improved disease diagnoses. 

Conclusions: MatrixFlow is an interactive visual analytic system that allows users to quickly discover patterns in 
clinical event sequences.  By unearthing the patterns hidden within and displaying them to medical experts, users 
become empowered to make decisions influenced by historical patterns. 

Introduction 

There is a substantial challenge to diagnosing many diseases in an early state, as symptoms may rarely emerge as a 
solitary disease process.  Comorbidities may mimic or mask the presence of a disease, and potentially can lead to 
false-positive or negative diagnoses.  In practice, physicians often make difficult diagnoses in the moment using 
their clinical knowledge, and not necessarily based on a quantitative assessment of longitudinal patient data from 
electronic health records (EHRs).  This is mainly due to the lack of available, analytical tools to help such decision 
makers extract meaningful patterns and insights from EHRs in a timely manner. 

One motivating example is the clinical complexity and heterogeneity of heart failure (HF).  HF has posed challenges 
to developing standardized criteria for its diagnosis. The Framingham HF criteria, originally published in 1971, were 
based on clinical data acquired in the 1950s and 60s13. In that study, two or more major criteria or one major and 
two or more minor criteria are used as the diagnosis criteria for HF. The challenges for making the correct HF 
diagnosis earlier are 1) how to correlate the sparse signals of a single patient across time and encounters, and 2) how 
to leverage historical data of other similar patients to identify the emerging pattern earlier.  

To address such challenges, we propose MatrixFlow, a visual analytic tool designed to help aid medical decision 
makers and researchers by making the subtle trends of disease progression more obvious.  The goal of our work is 
that by unearthing the hidden patterns in patient health records in MatrixFlow, emerging health risks may become 
more discoverable and earlier diagnoses of diseases can occur so clinicians and patients can proactively develop 
preventative strategies to reduce negative future outcomes.   

Our analytics work by extracting clinical event sequences from patient EHR data and then constructing a temporal 
network of co-occurring events to model the relationships between events as a disease progresses over time.  The 
patterns in the evolution of the disease are then revealed in our interactive visualization as a temporal flow of 
matrices, MatrixFlow.  MatrixFlow provides several interactive features for analysis: 1) one can sort the events 
based on the similarity in order to accentuate underlying cluster patterns among those events; 2) one can compare 
co-occurrence events over time and across cohorts through additional line graph visualization. 

We demonstrate that our approach is effective on a large population (n=50,625) by analyzing over 3.3 million 
clinical notes.  Our system was then used in collaboration with medical experts, who provide strong evidence that 
our visual analytics system supports their goals of a better understanding of disease progression and potential 
improvement of the diagnostic capabilities of medical practitioners. 



  

Background 

There are many challenges when trying to extract meaningful patterns and insights from electronic health records, 
including overwhelming amounts of data, time-limited practitioners, and gaps between the type of raw data collected 
and the information needs of clinical decision makers9.  However, visual analytics is seen as a promising solution to 
many of these challenges.  In fact, there is already a growing use of visualization to support clinical research and 
patient care1,6,7,14.  There have been several visual analytics to visualize clinical event sequences, notably 
LifeLines18, which supports the discovery of temporal categorical patterns across patient records, and LifeFlow19 , 
which provides an overview of patient event sequences to help medical researchers understand the pattern of 
transfers within hospitals for quality control.  

However, our work does not focus on visualizing clinical event sequences, but instead focuses on visualizing 
clinical event networks of a patient population based on event co-occurrence over time. There is a rich history on 
visualizing networks, but most employ techniques on static networks that do not change over time12.  One common 
technique for visualizing static networks is using an adjacency matrix representation1,11.  However, the recent 
proliferation of longitudinal network data has resulted in a need for developing visualization techniques for dynamic 
networks, resulting in a recent survey3.  Common approaches for visualizing include rendering the network as a 
node-link diagram that users can advance through time or watch as a dynamic movie16.   Another approach, 
TimeMatrix uses a matrix-based visualization, where each cell of the matrix contains a bar chart to illustrate how 
nodes and edges are evolving over time20.  To the best of our knowledge, there have been no systems designed to 
support the temporal visualizations of clinical event networks to date. 

Methods 

We propose MatrixFlow, a visual analytics system for understanding the evolution of clinical events.  We discuss 
how clinical events are extracted from electronic medical records, how a network of clinical events is modeled, and 
then how we visually represent the network over time to support insights. 

Clinical Event Sequences 

In this work, we aim at discovering meaningful patterns from clinical event sequences of patients.  Clinical event 
sequences are simply a series of time-stamped events from a patient’s medical record, such as disease diagnoses, 
patient symptoms, lab results, and medication orders.    

Figure 1 shows an illustrative example of a sequence of clinical events for a patient over 3 years.  In the first year, 
the patient experienced a symptom (Ankle Edema) and was then ordered a medication (Medication 1) to resolve it.  
A year later, the patient once again sought medical advice due to experiencing Dyspnea On Exertion (DOExertion), 
and was then ordered a new medication (Medication 2) to replace Medication 1.  Finally, in Year 3, the patient 
returned for medical care experiencing both DOExertion and Acute Pulmonary Edema (APEdema).  At this point, 
physicians were able to diagnose this patient with heart failure (HF), and the doctor also prescribed Medication 3 to 
manage the symptoms instead of Medication 2.  

  

Figure 1. An illustrative example of a sequence of clinical events for a fictional patient. 
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Clinical Event Networks 

Our research is interest in determining the co-occurrence of event – that is, when events simultaneously occur.   Co-
occurrence can be modeled by creating a network of clinical events, where events are nodes, and co-occurring 
events are connected by an edge.   

  

Figure 2. An illustrative example of a clinical event network, derived from the sequence described in Figure 1. 

Figure 2 illustrates a clinical event network, derived from the clinical event sequence described in Figure 1.  The 
network representation of the first year would be a simple network with two nodes (Ankle Edema and Medication1).  
As these two clinical events both occurred within the same time interval, the nodes are connected by an edge.  
Similarly, the network for the second year also contains two nodes (DOExertion and Medication2), also connected 
by an edge.  Finally, the network representing the third year is slightly more complex network, as there are three 
connected nodes (DOExertion, APEdema, and Medication 3).  While Figure 2 is illustrative at showing how the 
clinical network evolves over time, it can be difficult to interpret the differences as the graph becomes larger and 
denser.  For this reason, we created our visual analytics system, MatrixFlow. 

Instead of using a traditional node-link diagram (such as the illustration in Figure 2), MatrixFlow relies on its 
namesake visualization: the adjacency matrix.  In matrix visualizations, the columns and rows represent the nodes of 
the network, whereas each cell in a matrix represents the edge between the two nodes.  Figure 3 shows a matrix 
visualization the same networks illustrated in Figure 2.   

 

Figure 3. Matrix visualizations of the clinical event networks described in Figure 2. 

Matrices have several advantages for our scenario over node-link diagrams8, including:  1) a focus on showing co-
occurrences, which are naturally represented by adjacency matrix, 2) a stable layout that makes comparing networks 
across time easier, and 3) a natural technique for representing edges that represent values.  We will return to these 
advantages later as we describe our system. 

Modeling Clinical Event Networks 

While the above illustrations have focused on showing the clinical event network for only one patient, MatrixFlow 
was designed to show patterns of thousands of patients, mining through millions of clinical events.  MatrixFlow’s 
input in a set of patient event sequences.  MatrixFlow aligns patients on a common event (e.g., the diagnosis date of 
HF) and aggregates individual event graphs anchored by that alignment time point.  The system then analyzes the 
historical clinical events before the diagnosis and extract the sequence of events that led up to the diagnosis, 
representing a trajectory of the disease across the patient population.  Users of MatrixFlow have control over the 
granularity of the time intervals, so they can choose an annual interval as used in Figures1-3, or a different time 
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window, such as months or weeks. 

Once MatrixFlow calculates the diagnosis alignment and intervals are specified, the system models the clinical 
networks across all patients.  In practice, the system determines the nodes in the network by extracting a list of all 
unique clinical events, and these events become the nodes of the network.  The system then efficiently computes, for 
each event pair, the number of distinct patients who exhibited both events during the same time interval.  For 
instance, if 500 patients out of a population of 10,000 experienced Symptom1 and Symptom2 together in the same 
interval, then those two nodes would be connected by an edge with a weight of 500/10000 or 5%. However, if zero 
patients experienced Symptom1 and Symptom 3 in the same time interval, then there would not be an edge 
connected those two events. This co-occurrence network is computed using our advanced network modeling 
framework, Orion10.  As our networks now feature edges that have varying edge weights, our matrix visualization 
renders the color of each cell according to a sequential color scale representing the edge weight value (such as the 
color scale shown at the bottom of Figure 6). 

Visualizing Clinical Event Networks 

When visualizing matrices, it is important to choose an effective method to sort the order of nodes in order to reveal 
as many patterns as possible4. As we wish to reveal clusters of clinical events, we employ a greedy hierarchical 
clustering optimizing Newman’s modularity metric17. From this algorithm, we are able to obtain a sort order that 
minimizes the distance among connected nodes by ordering the nodes according to the cluster tree produced by our 
hierarchical clustering algorithm. Figure 4 shows an example of matrix visualization before and after the sorting is 
produced.  In the latter example, well-connected nodes (APEdema, DOExertion, and Medication 3) assemble to 
form a large box-like structure in the visualization, which makes the cluster more apparent than in the unsorted 
version on the left. 

      

Figure 4. An illustrative example of revealing clusters by using hierarchical clustering.  The matrix on the left is 
unsorted, whereas the matrix on the right is sorted to minimize distance among connected nodes in the clinical event 
network. 

In addition to visualizing clinical event networks as matrices, one of MatrixFlow’s main features is the ability to 
compare networks as they change over time.   As has been alluded in Figure 3, MatrixFlow supports this by 
visualizing matrices side-by-side along a horizontal axis.   These small multiples provide an overview of the disease 
progression over time.  However, in order make the temporal trends clearer, users can interact with the matrices to 
focus on a particular trend of interest.  By moving the mouse over an edge cell, a line graph is presented that plots 
the evolution of the co-occuring events across all time intervals.  For instance, in Figure 5, the user selected the co-
occurrence of DOExertion and Medication 2 and the temporal line graph is visualized. 

  



  

 

 
Figure 5. The temporal visualization capabilities of MatrixFlow, where matrices are aligned on a horizontal axis of 
time, and interactive line charts clarify temporal trends of edges of interest. 

 
Comparing the Clinical Event Networks of Cohorts 

Our system also supports analyzing and comparing various cohorts of patients.  For example, users may wish to 
compare and contrast the evolution of clinical events across different patient populations, such as patients with a 
disease compared to a control group.  Each cohort is represented by a row of matrices, and the line graph 
visualization shows temporal progression for all cohorts at once.  A detailed example of cohort analysis is featured 
in the Results section below. 

Results 

The objective here is to demonstrate the power of our visual analytic system for discovering temporal patterns in co-
occurrence event sequences. We first describe the EHR data and the medical challenges in understanding the 
development of Heart Failure (HF) in patients.  Then we describe the text mining process on extracting Framingham 
symptoms from EHR data. Finally, we describe several use cases on mining HF symptom sequences using our 
proposed visual analytic system. 

Study Population and Sources of Data  
 
Data for this study were obtained from the Geisinger Clinic (GC) primary care practices’ EHRs. Geisinger Clinic is 
part of the Geisinger Health System that serves residents in central and northeastern Pennsylvania.  The dataset used 
for this project consists of the full records for over 50,625 patients.  A total of 4,644 incident HF cases were 
identified between 2003 and 2010.  Up to ten control patients were selected for each case. Controls were clinic-
matched, sex-matched, and age-matched to the corresponding case but did not meet operational criteria for HF on or 
before the corresponding case’s diagnosis date.  Note that two different cases can share common controls, in this 
design.  For this study, we extracted the clinical notes portion of the EHRs for 4,644 case patients and for 45,981 
control patients.  There are different types of HF cases: HF with preserved ejection fraction (HFpEF) and HF with 
reduced ejection fraction (HFrEF). HFpEF are patients with HF diagnosis and with ejection fraction ≥50%, while 
HFpEF are patients with HF diagnosis and with ejection fraction <50%. In this dataset, we have 1,200 confirmed 
HRrEF and 1,615 confirmed HFpEF cases, and the rest are HF cases without a confirmed subtype. In total, there are 
more than 3.3 million clinical notes, comprising over 4 gigabytes of text.  

Framingham Symptoms 

The clinical complexity and heterogeneity of HF has posed challenges to developing standardized criteria for its 
diagnosis. The Framingham HF criteria, originally published in 1971, were based on clinical data acquired in the 
1950s and 60s15. In that study, 2 or more major criteria or 1 major and 2 or more minor criteria are used as the 
diagnostic criteria for HF. Understandably, there are limitations to applying these criteria today, as they predate 



  

technologies that are now routinely used in current practice (e.g., echocardiography and natriuretic peptide). In fact, 
of the 17 major and minor criteria (Table 1), several are impractical for routine care (e.g., serial forced vital 
capacity), are no longer performed (e.g., circulation time), or are less reliably determined by today’s physicians than 
those of the 1950s and 60s (e.g., S3 gallop). Nonetheless, the clinical construct inherent to the Framingham criteria 
makes them useful for diagnosis in primary care, especially since a majority of them are typically documented by 
primary care providers during routine encounters, well before more severe symptoms prompt the ordering of 
specific imaging or serum studies.  However, there are a number of reasons why it is difficult for a physician to 
detect the clinical signal that is sensitive and specific to HF, even when there is documentation that Framingham 
criteria have been met. Based on the practical consideration of the availability, quality and severity, we selected nine 
out of 17 Framingham criteria as the focus in this study as indicated in Table 1. 
 
Table 1: Framingham signs and symptoms for HF 

Major Criteria Short Name Selected 
Paroxysmal nocturnal dyspnea or orthopnea PNDyspnea (PND)  
Neck vein distention JVDistension (JVD)  
Rales Rales (RALE) Yes 
Radiographic cardiomegaly RCardiomegaly (RC) Yes 
Acute pulmonary edema APEdema (APED) Yes 
S3 gallop S3Gallop (S3G)  
Central venous pressure > 16 cm of H2O ICVPressure (ICV)  
Circulation time of 25 seconds (not extracted)  
Hepatojugular reflux HJReflux (HJR) Yes 
Weight loss of 4.5 kg in 5 days, in response to 
Rx 

WeightLoss (WTL)  

Minor Criteria   
Bilateral ankle edema AnkleEdema (ANKED) Yes 
Nocturnal cough NightCough (NC) Yes 
Dyspnea on ordinary exertion DOExertion (DOE) Yes 
Hepatomegaly Hepatomegaly (HEP) Yes 
Pleural effusion PleuralEffusion (PLE) Yes 
A decrease in vital capacity by 1/3 of max (not extracted)  
Tachycardia (rate of  ≥ 120/min) Tachycardia (TACH)  

 
Need for Visual Analytic Tools  

There are substantial challenges to identifying the earliest signs and symptoms of HF, as it rarely emerges as a 
solitary disease process. Other diseases co-occur in the natural history of HF and include COPD, renal insufficiency 
and venous stasis, among others. These co-morbidities can mimic and even mask the presence of HF and lead to 
false positive or negative decisions. In practice, the physician is left with the difficult task of basing their decision to 
act on the examination of a patient in the moment, not based on a sophisticated quantitative assessment of 
longitudinal patient data or even a manual review of such data.  

The evolution of patterns of co-occurrence and symptoms specific to HF is both subtle and complex, which could be 
aided with the help of powerful visual analytic tools to make those subtle trends obvious. For example, during a 
given encounter it is usually difficult to separate the presentation of true and false positive HF signs and symptoms, 
especially in the face of concomitant diseases and variable states of wellness. However, if a visual analytic system 
can help physicians connect the dots using historical records from the patient and similar patients, emerging health 
risks can become discoverable.  

Text Mining  

Before the analysis, a clinical natural language processing (NLP) procedure was developed to help physicians to 
automatically identify the onset of Framingham criteria in longitudinal clinical notes9. This can accurately identify 
affirmations and negations of Framingham criteria, which can directly reduce workload for HF-related chart 
reviews.  About 4.5 million criteria mentions were identified; 900 thousand were classified as positive criteria and 
the remaining 3.6 million were negative criteria.  For this study, only affirmed criteria were analyzed.  Of all of the 



  

HF cases, 97% (4,490 of 4,644) met Framingham diagnosis criteria for heart failure, whereas in the control cohort 
8% (3725 of 45,981) met these diagnosis criteria. 

Trend Discovery and Cross-cohort Patterns 

Based on the scenario of the HF symptom analysis using the text mining results, we have gone through an iterative 
development process for building our visual analytic system through demonstration and discussion with four 
medical experts.  In our following description of MatrixFlow, we describe trends the medical experts noted while 
using our system. 

Figure 6a shows the evolution of co-occurrence matrices of positive Framingham symptoms in the HFrEF patients, 
where patients are aligned by their diagnosis date. Each matrix displays co-occurrence events in a 3-month window. 
The rightmost matrix corresponds to the window right before diagnosis and the leftmost one the window 15 to 18 
months before the diagnosis. From left to right as time evolves, we can easily observe the percentage of patients 
having co-occurring Framingham symptoms is increasing, which confirms with the degrading clinical status of those 
patients. Notably, as patients gets closer to HF diagnosis, multiple Framingham symptoms starts to appear more 
frequently.  A similar temporal pattern is observed in HFpEF patients (Figure 6b), which seems to suggest that 
despite the pathophysiological differences, both HF types seem to develop the same co-occurrence patterns on 
Framingham symptoms. On the other hand, control groups (Figure 6c) have much less obvious patterns, except a 
slight increase of prevalence on common symptoms like DOExertion and AnkleEdema, presumably due to the 
normal aging process.   

 

Figure 6. The temporal evolution of the Framingham symptoms in MatrixFlow.  a) The top row of matrices 
represents the patterns the HFrEF patient cohort.  b) The middle row represents the HFpEF patient cohort.  c) The 
bottom row represents the Controls cohort. 

Similar increasing trends on negative Framingham symptoms can be observed as shown in Figure 7. The reason is 
that as physicians suspect HF as a possible differential diagnosis, more frequent exams and documentations about 
the denials of those Framingham symptoms start to show up in the clinical notes. Those frequent negative mentions 
themselves are a subtle indicator that HF is in the horizon. We observe much larger percentage of patients with 
negative symptoms than positive symptoms.  



  

 
Figure 7. The temporal evolution of the negative Framingham symptoms in MatrixFlow for the HFrEF patient 
cohort.  

By comparing Figures 6 and 7, one can notice that certain co-occurrences have a large number of both of positive 
and negative mentions.  This is an important and surprising finding.   The data suggests that doctors document more 
negative mentions when they suspect positive mentions on certain patients. For a single patient, a reversal pattern 
(i.e., positive mention of a symptom followed by a negative mention of the same symptom in a future encounter) is 
often observed as the patient approaches the HF diagnosis. When we plot the aggregated patterns over a patient 
cohort by a time window, the negative and positive mentions will co-occur due to the aggregation effect. 

As described in our methods section, MatrixFlow uses hierarchical clustering to order the cells of the matrix 
visualizations, so that clusters of related co-occurring symptoms are evident.  The ordering of clinical events 
remains the same for all time intervals of a cohort by finding the optimal ordering in the time interval closest to the 
diagnosis date and then is applied to earlier time periods.  We use this strategy because if the hierarchical clustering 
method is applied independently to each time period, the ordering will often be slightly different across time 
intervals and makes comparisons difficult. 

The value of hierarchical clustering is evident by comparing Figures 6 and 7.  In the positive symptoms in Figure 6a-
6b, DOExertion and AnkleEdema are next to each because many patients share them. However, the order of 
negative symptoms in Figure 7 is different. In fact, Rales becomes the most dominant among negative symptoms, 
which is clinically meaningful because Rales is the most apparent symptom of HF. Rales is also a symptom that 
requires physician to deliberately examine and document.  Also, the fact that Rales is being checked more frequently 
over time is a strong indicator that HF is suspected by physicians. 

Expert Evaluation 

We have demonstrated our system to four medical experts (one cardiologist, two medical scientists who were 
formerly emergency room doctors, and one epidemiologist) in order to validate our hypotheses. 

All four of the medical experts confirmed that temporal patterns of the progression of the disease were evident.  One 
noted that it would take “years to distill such information out of following patients” to reach the same conclusions 
evidenced immediately by MatrixFlow. Another expert noted that leveraging the information displayed by 
MatrixFlow could “potentially help clinicians make earlier diagnoses, due to the large variability in diagnosis of 
diseases”.  Similarly, another expert mentioned that visualizations of the historical information of similar patients 
can “help doctors prioritize a preventive strategy to avoid onset of heart failure” based on what strategy worked the 
best for those similar patients.  Another expert remarked that the ability to compare cohorts was extremely useful, 
and noted that there is currently a research debate about whether HFpEF and HFrEF are the same or different 
diseases.  They expert remarked that analyzing the cohorts in MatrixFlow may provide evidence for such debate 
(e.g., Figure 8 shows an example of the comparing the co-occurrence patterns of DOExertion and AnkleEdema 
among cohorts). 



  

 

Figure 8. Interactive line chart in MatrixFlow highlights the difference in co-occurrences of AnkleEdema and 
DOExertion between cohorts. 

While MatrixFlow was initially designed to support population-level analysis, all of the medical experts quickly 
remarked on how MatrixFlow can also be used to perform individual patient analysis. One medical expert suggested 
that one can map an individual patient who is at risk of HF to a subcluster in MatrixFlow based on their existing 
Framingham symptoms and estimate the probability and the time period of developing HF.  Another medical expert 
suggested that one could use MatrixFlow to look at post-diagnosis evolution of patients and to visually compare the 
effectiveness of different treatment plans. 

Discussion and Conclusion 

Based on our sessions with medical experts, we believe this is a rich space of future work to continue to enhance our 
visual analytics system.  Currently, MatrixFlow is most effective in visualizing a small number of clinical events, as 
the matrix visualizations typically become more difficult to interpret as the size grows.  There are several interactive 
visualization solutions to aid in this situation (e.g. the NodeTrix technique12) or an appropriate dimensionality 
reduction technique could also be used to handle large dimensional data.   Currently, MatrixFlow only displays a 
single evolution pathway, but as patients split or merge into other meaningful cohorts, advanced visualization 
techniques could be utilized.  We plan to investigate the right mechanism to support more complex evolution 
pathways. 

In this paper, we present a visual analytic system, MatrixFlow, which converts clinical event sequences of patient 
cohorts into time-evolving networks and visualizes them as a temporal flow of matrices. MatrixFlow is an 
interactive visualization system that enables users to discover subtle patterns over time and across cohorts. We 
demonstrate the power of MatrixFlow in the context of analyzing Framingham symptom events extracted from a 
large cohort of HF cases and controls (n=50,625), We showcase the MatrixFlow system and conduct several 
interviews with medical experts to confirm its effectiveness in discovering temporal patterns. All the experts are 
extremely enthusiastic and positive towards the features provided by MatrixFlow, especially its capability to identify 
trends, clusters of interest, and perform cohort comparison. 
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