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Objective: In order to derive data-driven insights, we develop Care Pathway Explorer, a system that mines
and visualizes a set of frequent event sequences from patient EMR data. The goal is to utilize historical
EMR data to extract common sequences of medical events such as diagnoses and treatments, and inves-
tigate how these sequences correlate with patient outcome.
Materials and methods: The Care Pathway Explorer uses a frequent sequence mining algorithm adapted to
handle the real-world properties of EMR data, including techniques for handling event concurrency, mul-
tiple levels-of-detail, temporal context, and outcome. The mined patterns are then visualized in an inter-
active user interface consisting of novel overview and flow visualizations.
Results: We use the proposed system to analyze the diagnoses and treatments of a cohort of hyperlipi-
demic patients with hypertension and diabetes pre-conditions, and demonstrate the clinical relevance
of patterns mined from EMR data. The patterns that were identified corresponded to clinical and pub-
lished knowledge, some of it unknown to the physician at the time of discovery.
Conclusion: Care Pathway Explorer, which combines frequent sequence mining techniques with
advanced visualizations supports the integration of data-driven insights into care pathway discovery.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Advances in data collection and storage technologies have led to
ubiquitous yet complex Electronic Medical Records (EMRs).
Because patient EMRs reflect the temporal nature of patient care,
a patient’s sequence of symptoms and diagnoses often correlates
with their medications and procedures. These observed events
may unlock the ability to analyze disease progression pathways
and identify temporal patterns [33]. We believe such patterns
may provide important insights into how diseases evolve over time
and the effects of implemented interventions.

However, despite the fact that temporal knowledge discovery
and pattern mining is no longer an unaddressed problem in data
mining [1], it is still not easy to directly apply or adapt existing
technologies to medical data for a number of reasons:
� There are many different event types encoded in EMRs. For
example, there are thousands of distinct diagnosis codes, lab
tests and drugs. Typically, large numbers of distinct event types
can adversely affect the computational efficiency of temporal
pattern mining techniques.
� EMRs may contain millions of patients over decades, and such

voluminous data poses a great computational challenge to con-
ventional methods.
� In medical scenarios, there are typically outcomes associated

with each patient, such as the diagnosis of a disease or hospital-
ization. Clinicians are not only interested in the temporal pat-
terns, but also in the correlations between such patterns and
the patients’ outcomes. Most existing pattern mining tech-
niques lack the capability to elucidate such correlations.

In this paper, we propose Care Pathway Explorer, an interactive
hierarchical information exploration system for analyzing longitu-
dinal medical records. Our system provides a visual overview of
frequent patterns mined from EMR patient traces. Instead of min-
ing and visualizing all details at once, the interface supports inter-
active exploration for researchers to examine the level-of-detail
relevant to user tasks by leveraging event hierarchies.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbi.2015.06.020&domain=pdf
http://dx.doi.org/10.1016/j.jbi.2015.06.020
mailto:adam.perer@us.ibm.com
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There are several major components to the Care Pathway
Explorer:

� The Event Database, which stores patient electronic medical
records with multiple event types, patient outcomes, and the
event hierarchy for each event type.
� The Data Preprocessor, which constructs patient traces from the

event database that can be directly fed into the Frequent Pattern
Analytics engine.
� The Frequent Pattern Analytics, which mines frequent patterns

from patient traces obtained by the Data Preprocessor and ana-
lyzes how these mined patterns correlate with outcomes.
� The Visual Interface, which provides visualizations of the fre-

quent pathway events, with which users can interact to explore
details of interest and generate insights.

These visual analytic technologies combine to support the min-
ing and visualization of care pathway patterns. The goal is to pro-
vide insights into which practices lead to desirable patient
outcomes, so clinicians can interpret meaningful patterns and cus-
tomize care plans for complex patients. As established clinical
practice guidelines typically only cover a single disease condition
for average patients, such customization tools are critical in order
to tailor care plans to the specific needs of real world patients
who often have multiple complex comorbidities.

1.1. Background and significance

The exploration of temporal knowledge from longitudinal
EMRs with data mining techniques is an important problem that
has been the focus of study of much medical informatics
research. In general, there are two types of studies: holistic and
localized.

The goal of a holistic study is to exploit knowledge that can
describe the overall event traces of the patient population. A typi-
cal technique that falls into this category is Business Process
Management (BPM), which is a holistic management approach
focused on aligning all aspects of an organization with the desires
and needs of clients. In the healthcare domain, BPM technologies
are mainly used for analyzing clinical pathways [2–4], which are
standardized and normalized treatment patterns. However, apply-
ing BPM techniques to real patient data (e.g., for designing person-
alized clinical pathways) results in very complex and chaotic
graphs.

To avoid the clutter caused by holistic studies, localized studies
focus more on exploring the local characteristics of the patient
event traces. For example, Norén et al. [5] propose a graphical sta-
tistical approach for summarizing and visualizing temporal associ-
ations between the prescription of a drug and the occurrence of a
medical event, where the focus is the time period around the drug
description. Chittaro and Combi [6] and Fails et al. [7] propose
visual interfaces for constructing database queries to seek tempo-
ral patterns in multivariate temporal clinical data; the latter was
further used in [8] for searching temporal patterns in patient histo-
ries. However, the system requires user specification of the struc-
ture of the pattern to constrain the database queries. Mörchen
and Ultsch [9] propose a method called Time Series Knowledge
Mining (TSKM) for uncovering local temporal relationships in mul-
tivariate data, but requires predefined temporal grammar and logic
with prior knowledge.

Another methodology that is relevant to sequential pattern
mining is Temporal Abstraction [10,11,35]. However, this technol-
ogy generally requires an interval-based representation, which
needs to know the duration of each event. In real-world EMR
systems, duration information is often not captured, so we
choose to use techniques that do not require this information.
However, it is also possible to abstract point-based data by
applying temporal knowledge which results in a more abstract
representation of the data, in the form of symbolic time inter-
vals Batal et al. provide several pattern mining techniques that
uses a time interval-related representation of a sequence, which
requires either the events have continuous values that can be
quantized or the duration of every event is available [36,42].
Moskovitch et al. provide several approaches for discretizing
continuous event values to derive more discriminative
time-interval related patterns [40,41]. Patel et al. also provide
a technique for mining interval-based events [43]. KNAVE II
[12], VISITORS [13] and ViTA-Lab [34] are visual interfaces to
interactively explore the temporal abstraction process in single
and multiple patients, respectively. Other interval-based
approaches include MuTIny [14] that discovers multi-time inter-
val patterns, and MEMURY [15]. As most EMR data contains
point events, and not interval events, our method aims to mine
patterns from sequences of point events. Our work is different
from these approaches in the sense that we only focus on
point-based event sequences, although we propose a scheme
for multiple levels-of-detail that could be applied to any type
of pattern mining algorithm. We further note that pattern explo-
sion can happen for either type of algorithm, whether it is for
point-based event sequences or time-interval event sequences.
Our scheme for multiple levels-of-detail, as well as our visual
user interface, can be applied to these other type of pattern min-
ing algorithms.

The Care Pathway Explorer system presented in this paper falls
into the category of localized studies of EMRs. Care Pathway
Explorer mines frequent patterns from patient traces and then
illustrates them in a visually comprehensible and interactive user
interface. There have recently been significant advances in the
visualization community toward designing techniques for tempo-
ral event sequences of electronic health records. CareCruiser is a
visualization system to compare EMR data to medical protocols
[16]. LifeFlow [17] introduced a way to aggregate multiple event
sequences into a tree, and EventFlow [18] later extended this
approach to support both point-based and interval-based events.
Outflow [19] designed a way to aggregate events into a graph, as
well as integrating statistics. CoCo [37] is a tool for comparing
event sequences at a cohort level.

Most recently, Frequence [20] is a user interface that integrates
data mining and visualization in an interactive information explo-
ration system for finding frequent patterns from longitudinal event
sequences. The work described in this paper is an extension and
adaptation of Frequence to support the use cases of medical infor-
matics more directly, including a customized Event Database and
Data Pre-processor designed for patient EMRs. Furthermore, an
additional visualization was created to support an overall view of
all events found in the patterns supporting a use case requested
by physicians. In addition, Care Pathway Explorer has been inte-
grated with a care plan template authoring tool, to support an
end-to-end workflow from data-driven insights to institutional
implementation.
2. Materials and methods

In this section, we introduce the Care Pathway Explorer system
in detail, which supports the following flow of exploration:

1. The system shows an overview of the frequent patterns mined
from patient event traces at the coarsest level, featuring statis-
tics that indicate their correlations with outcomes.

2. The physician examines the frequent patterns and interactively
selects specific patterns of interest for more detail.
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3. The system computes the patient subsets that match the physi-
cian’s specified sub-traces. The system then extracts the event
traces for those patients, using a deeper level of the hierarchy,
as specified by the user. These traces are then delivered to the
frequent pattern miner engine.

4. The Frequent Pattern Analytics mines frequent patterns and
displays them in the visualization alongside meaningful
statistics.

5. This iterative process continues, returning to step 2 with each
iteration, until physicians are satisfied with the insights
generated.

Fig. 1 provides a graphical overview of the flow of the Care
Pathway Explorer system, from which we can see that there are four
major modules: Event Database, Data Preprocessor, Frequent Pattern
Analytics, and a Visual Interface. In our implementation, the Event
Database was implemented using DB21 as the relational database
software. The Data Preprocessor and Frequent Pattern Analytics
were implemented using custom analytics developed in Python.
The web-based Visual Interface was implemented using the D3.js2

visualization toolkit.
In the following sections, we introduce each of these modules in

detail.

2.1. Event database

There are different types of events contained in patient EMRs
which are stored in the Event Database. These events may be of
many different classes, including labs, vital signs, medications
and diagnoses. We integrate all classes of events in a single data-
base using a Universal Feature Model (UFM), which is a
four-column table that links patient IDs (unique for each patient),
day IDs (timestamp of the event), event IDs (medical event) and an
event value (numerical value associated with the medical event, if
applicable). In the spirit of a star schema, there is also a separate
patient table linking patient ID to the patient details, an event table
linking event IDs to event details, and so on.

EMR data is processed and ingested using ETL (Extract,
Transform, and Load) modules [21] to extract information from
the EMRs and map them to coding standards and hierarchies, if
available. Most medical events (e.g., diagnosis and medication)
are organized hierarchically, which is leveraged in our system
because we want to mine frequent patterns of medical events at
different levels of detail to support iterative exploration. For exam-
ple, Fig. 2 shows a set of events under cardiac disorders in the diag-
nosis hierarchy, which contains four different levels. The first level
is the Hierarchy Name, which is the highest level in the
Hierarchical Condition Categories (HCC) used in Medicare Risk
Adjustment provided by Centers for Medicare and Medicaid
Services (CMS). This level has 38 distinct event types. The second
level is the more detailed Hierarchical Condition Categories
(HCC), which contains 195 different codes. The third level contains
1230 unique Diagnosis (DX) group names (the first 3 digits of the
ICD9 code). The fourth-level contains 14,313 different codes of
the International Classification of Diagnosis 9th edition (ICD9).
Similarly, medications can be mapped to a 3-level hierarchy using
the United States Pharmacopeia (USP) Model Guidelines. The first
level is the USP Category, which has 41 distinct high-level cate-
gories of medications. The second level is the USP Class, where
has 129 distinct classes. Finally, the third level is the Drug
Ingredient name, which has 5869 unique drug ingredients. All
levels in the hierarchies are a many-to-one mapping to the higher
levels.
1 http://www-01.ibm.com/software/data/db2/.
2 http://d3js.org.
2.2. The data preprocessor

The main goal of Care Pathway Explorer is to mine frequent tem-
poral patterns from patient EMRs and explore them in a visual
manner to reach insights. However, an issue that affects the effi-
ciency of temporal pattern mining is when many events happen
simultaneously. This is particularly true when the time granularity
of the patient EMR is low resolution. Typically in EMRs, and espe-
cially in outpatient records, the finest time resolution is a day, and
during a day, multiple medical events may occur to a patient. For
example, it is rare that a patient undergoes only one lab test during
a lab visit. Instead, a typical scenario involves a patient whose
blood is drawn, with multiple lab tests conducted on the blood
sample (known as lab test panels). Similarly, at a visit with a physi-
cian, the patient is required to have their height, weight, tempera-
ture and blood pressure measured, and this data is often inserted in
EMRs as separate yet concurrent events.

Such data characteristics yield a great challenge for frequent
pattern mining algorithms, as they detect patterns with all possible
combinations of events and subsets of events occurring at the same
time. We refer to this phenomenon as pattern explosion. To allevi-
ate this problem, we preprocess patient traces before feeding them
to the frequent pattern miner. The goal is to reduce the number of
events happening at the same time. There are many Same Day
Concurrent Events (SDCEs) contained in EMRs, thus we first detect
the frequent Clinical Event Packages (CEPs) that are frequent sub-
sets of SDCEs. If we treat each SDCE in every patient trace as a
transaction, then the problem of detecting those CEPs is equivalent
to the problem of frequent item-set mining [22], and each detected
CEP can be used as a super event. Then, a greedy approach is
applied based on Two-Way Sorting to break down each SDCE as a
combination of regular and super events, such that the number
of events contained in each SDCE is greatly reduced.

To better explain the process of breaking down SDCEs, we pro-
vide the following example: Suppose there exists a set of clinical
events ABCDE that all appear on the same day. In order to avoid pat-
tern explosion, this group of events needs to be broken down using
commonly used CEPs that are detected. In this example the common
CEPs are shown in the center of Fig. 3. The algorithm then sorts these
packages according to the two-way sorting strategy. The CEPs are
first sorted according to their cardinalities. Then, for packages with
the same cardinality, they are sorted with respect to their appear-
ance frequency. These sorting strategies represent the axes in
Fig. 3. So, in order to break down ABCDE, the algorithm first finds
the longest event packages that are subsets. In this case, ABC and
ACE are the longest packages that are subsets of ABCDE. Then,
because ABC occurs more frequently than ACE, ABC is selected as a
super event contained in ABCDE. Besides ABC, the rest of the events
are DE. Then the procedure is applied again to break down ABCDE as
ABC, D, E. Using this technique, there are only 3 super events in
ABCDE after the break-down procedure.

2.3. Frequent pattern analytics

After data pre-processing, the next step is to feed the processed
patient traces to the Frequent Pattern Analytics. As the patient EMR
traces can be very long, we choose Sequential PAttern Mining with
bitmap representation (SPAM) [23] as our baseline approach.
SPAM first constructs a bitmap style representation for all patient
traces, so that all the event sequences are binary codes and the pro-
cedure of detecting frequent patterns involves and/or operations to
these binary sequences. Due to this optimized strategy, SPAM has
proven to be highly efficient for mining temporal patterns, espe-
cially from long sequences. That said, other frequent pattern ana-
lytics are also possible, such as Fradkin and Morchen’s technique,
which is a variant of the BIDE algorithm, for discriminative pattern

http://www-01.ibm.com/software/data/db2/
http://d3js.org


Fig. 1. An overview of the Care Pathway Explorer system, which contains four major modules: Event Database, Data Preprocessor, Frequent Pattern Analytics, and a Visual
Interface.

Fig. 2. An illustration of how many medical events (e.g., diagnosis and medication) are organized hierarchically in EMRs. This figure illustrates some of the events that and
organized under Cardiac Disorders in the diagnosis hierarchy, which contains four different levels of detail.

Fig. 3. An illustration of how the Data Preprocessor detects frequent Clinical Event
Packages (CEPs) within Same Day Concurrent Events (SDCEs) to avoid pattern
explosion.
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mining [39]. Care Pathway Explorer’s multiple levels-of-detail
scheme for pattern mining can be applied to any specific
approaches including BIDE.

However, in the medical domain, users may be interested in look-
ing for patterns only within a certain domain-relevant time window.
SPAM does not have the capability to incorporate such inter-event
duration constraints. We thus modified the algorithm to provide this
capability. SPAM also does not support outcome analysis directly,
thus we extended SPAM to handle this capability in the following
manner. Suppose each patient has an outcome, which can be either
discrete (e.g., dead or alive) or continuous (e.g., HbA1c value for dia-
betes patients). In other words, every patient can be associated with
an outcome of either positive or negative. If we have n patients, we
can construct an n-dimensional vector, with the value on a specific
dimension equal to 1 if the corresponding patient has a positive out-
come, or equal to�1 if the corresponding patient has a negative out-
come. For every pattern, we can also construct an n-dimensional
vector with the value on the i-th dimension indicating the frequency
this pattern appeared in the EMR sequence of the i-th patient. The
percentage of the patient population that exhibits each pattern is
referred to as the support, which indicates how frequent the pattern
occurs. Then, we can compute the correlation statistics (e.g., Pearson
correlation, odds ratio, relative risk and information gain) between
every pattern vector and the label vector. That is how the correlation
is computed. Such patterns are of particular interest to practitioners
as they could represent potential best practices, or sub-optimal
actions to be avoided, or sequences of events that indicate a partic-
ular risk. Additional details of modifications to the SPAM algorithm
are described for Frequence [20].

2.4. Visual interface

The Care Pathway Explorer mines sequential knowledge from
the EMRs so that physicians and clinical researchers can use these
frequent patterns to understand disease evolution and optimize
treatment plans. However, the quantity of patterns discovered is
often very large. Thus, our system not only mines patterns but also
presents the data in a user-centric way so that the patterns can be
utilized in real-world settings. Information visualization is an
effective way of communicating complex data, and thus Care
Pathway Explorer features two complementary visualizations.

2.4.1. Overview visualization
After the pattern mining process, users can use the Overview

Visualization, which resembles a bubble chart and displays events
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of the most frequent patterns mined (Fig. 4 left). Each bubble rep-
resents a medical event that occurs frequently among the patients.
The size of the bubble corresponds to the number of times each
medical event occurs in the mined patterns. The color of the bubble
also corresponds to outcome, so bluer bubbles are events that
occur more often in positive patients (those who are not hospital-
ized with in the first year after diagnosis), whereas bubbles that are
more red lead to patterns that are common with negative patients
(those who are hospitalized within the first year after diagnosis).
While the X, Y positions of the bubbles are abstract, each bubble
is computationally positioned near event types with which it most
frequently appears, to give an overview of clusters of patterns. The
positioning is computed by first creating an event graph, where
event nodes are connected by an edge if they occur in the same
pattern. The edges are then weighted by the number of times the
events appear in the same patterns. Within this graph, clusters of
related events are identified by a greedy hierarchical clustering
optimizing Newman’s modularity metric [24]. These clusters are
then positioned in the overview visualization using a hierarchical
circle packing technique [25].

2.4.2. Flow visualization
In order to see how these bubbles connect to each other, there is

a second visualization that resembles a Sankey diagram [26], a type
of chart often used to show the magnitude of flow between nodes
in a network. We describe the characteristics of our visualization
using Fig. 5 as an illustrative example.

Events in the frequent patterns are represented as nodes, and
event nodes that belong to the same pattern are connected by
edges. For instance, the simple pattern Diagnosis ? Medication,
is visualized as a Diagnosis node connected to a Medication node
at the bottom of Fig. 5. Patterns that share similar subsequences,
such as Lab ? Diagnosis ? Medication and Lab ? Diagnosis ?
Lab, involve two edges from Lab to Diagnosis representing each
subsequence. Thus, prominent subsequence patterns also become
visually prominent due to the thickness of the combined multiple
edges. The Sankey-style layout is computed using iterative relax-
ation. First, the horizontal position of each node is fixed based upon
its position in the pattern. Next, the layout algorithm begins with
the nodes on the far left, and then places the connecting nodes on
the right to minimize edge distance. Then, the iterative process
has a reverse pass, going from right-to-left, and then the entire pro-
cess is repeated five times. Node occlusion is avoided by shifting
nodes that overlap due the result of the layout algorithm.

Of course, not all patterns are equal, as some correlate to good
outcomes whereas others correlate to bad outcomes. This visual-
ization uses the same color mapping as the Overview visualization.
By default, the outcome is determined by Pearson correlation, but
users can interactively select other measures (e.g., odds ratio, rela-
tive risk and information gain). Users can also mouse-over edges to
get additional data, including a description of the pattern and
statistics describing the patients.

2.5. Interaction

The visualization is organized hierarchically, based on the Event
Database. Initially, the visual interface is populated with all fre-
quent patterns at the coarsest level. The overview visualization
acts as a starting point for users to interact with the visualization
and explore patterns of interest. Users can click a sequence of
nodes or edges to highlight an interesting pattern. This selection
enables a query for all patients who have traces that fit the pattern.
Users can explore the patterns of all patients, or explore their pat-
terns in more detail, by drilling-down to the next level of hierarchy
to get more specific information. For instance, if users select the
pattern Diagnosis ? Medication, the visualization shows all
patients that matched the pattern, and then the mined pathways
would be visualized in more detail using diagnosis HCC codes
and medication Pharmacy Subclasses. The user can make selec-
tions and hierarchically drill down until the desired
level-of-detail is reached. If a user would like to focus on patterns
of a particular support or outcome range, users can use the range
sliders to filter to the patterns of interest.

After extended analysis, if a care plan coordinator determines a
set of patterns would be a beneficial sequence to add to the health-
care institution’s care plan template, the user can select the pattern
and deliver it to a care plan template tool. In order to demonstrate
this concept, we have integrated Care Pathway Explorer into a care
plan template tool, Care Pathway Workbench [27].
3. Results

In order to evaluate the utility of Care Pathway Explorer, we con-
ducted a long-term case study of a real physician using real-world
datasets to demonstrate its effectiveness at reaching insights in
practice. Research in the visualization community suggests that
traditional evaluation metrics (e.g. measuring errors or task time
completion) are often insufficient to evaluate visual analytics sys-
tems designed for data exploration [28–30]. Instead, we chose to
use the evaluation methodology developed by Perer and
Shneiderman [31] and conducted a long-term case study with Dr.
Robert Sorrentino, the Chief Medical Officer of Providence
Medical Foundations.

Dr. Sorrentino was interested in analyzing patterns mined from
patients with hyperlipidemia. Hyperlipidemia is a common chronic
condition and several large clinical trials have identified LDL (Low
Density Lipoprotein) as one of the major predictors of heart dis-
ease. While there are various medications for lowering LDL levels,
comprehensive guidelines on the most effective intervention are
still lacking, particularly for patients with multiple comorbidities.
Analyzing treatment patterns and associated outcomes of such
patients could provide valuable insight into how to customize
the general guidelines to achieve better outcomes. Dr. Sorrentino
was thus interested in analyzing the patterns consisting of all med-
ication events, as well as diagnosis events related to hyperlipi-
demia. The groups of the diagnosis codes mined with Care
Pathway Explorer are described in Table 1.

As illustrated in Fig. 6, events were mined for a 1-year time per-
iod, beginning with the patient’s diagnosis of hyperlipidemia. In
order to determine the patient outcomes associated with treat-
ments, we analyzed the 90-days following the 1-year time period,
and computed the average LDL cholesterol levels according to the
patient’s lab results. As recent research suggests that the target LDL
level should be �100 mg/dl, we classified patients with an average
LDL of 100 or less to be labeled as a positive outcome, and patients
with an average over 100 to be labeled as a negative outcome.

Initially, patterns were mined from 14,036 patients with hyper-
lipidemia. This population was balanced, so 50% of these patients
had positive outcomes. The patients had a total of 70,379 diagnosis
events and 97,189 medication events during their first year after
diagnosis. However, few sequence patterns were found, even when
setting the support to a low threshold such as 0.005. The patterns
that were found are displayed in Fig. 7. Dr. Sorrentino speculated
that by including all patients that simply had a hyperlipidemia
diagnosis, the diversity of the types and order of clinical events
these patients had would vary greatly, and that interesting pat-
terns might be lost due to the extremely low support.

However, Dr. Sorrentino hypothesized that if he focused on
specific sub-cohorts with pre-conditions, the analysis might lead
to additional insights. He decided to investigate two
pre-conditions: hypertension and diabetes.



Fig. 4. Care Pathway Explorer features two complementary visualizations, an overview which resembles a bubble chart and displays events of the most frequent patterns
mined (left), and a flow visualization to show the most frequent patterns (right).

Fig. 5. An illustrative example of the flow visualization for a set of frequent patterns. Events in the frequent patterns are represented as nodes, and event nodes that belong to
the same pattern are connected by edges. Patterns are colored according to their correlation with patient outcomes.

Table 1
List of the ICD-9 Groups used to mine diagnoses from patient records containing the
primary hyperlipidemia diagnoses, and the complications that result from
hyperlipidemia.

ICD-9 group Description

272 Disorders of lipoid metabolism
362 Other retinal disorders
410 Acute myocardial infarction
411 Other acute and subacute forms of ischemic heart disease
412 Old myocardial infarction
413 Angina pectoris
414 Other forms of chronic ischemic heart disease
429 Ill-defined descriptions and complications of heart disease
433 Occlusion and stenosis of precerebral arteries
434 Occlusion of cerebral arteries
435 Transient cerebral ischemia
440 Atherosclerosis
996 Complications peculiar to certain specified procedures
V12 Personal history of certain other diseases

Fig. 6. In the long-term case study, events were mined for a 1-year time period, beginni
outcomes associated with treatments, the 90-days following the 1-year time period wer
lab results.
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3.1. Hyperlipidemia with diabetes pre-condition

After filtering to patients with a diabetes pre-condition before
the initial hyperlipidemia diagnosis, there were 1386 patients after
balancing, featuring 11,058 hyperlipidemia-related diagnoses and
20,693 medication events.

Dr. Sorrentino was interested in analyzing patients with
co-existing diabetes as they often have unhealthy lipid profiles
with elevated LDL as a result of the changes to the metabolic path-
ways that channel the breakdown products of excess glucose into
increased LDL production. Typically, prevention can be achieved
through diet, exercise and HMG CoA Reductase Inhibitor usage to
keep LDL less than 100 mg/dl. Thus, he was reassured to see that
‘Dyslipidemics, HMG CoA Reductase Inhibitor’ was a common
event in most of the blue patterns at the top of Fig. 8.

After using Care Pathway Explorer to interactively filter to
include only negative patterns, Dr. Sorrentino noticed that most
of the negative patterns are related to drug-related side effects.
Most of the drugs in question involved increases in LDL production
ng with the patient’s diagnosis of hyperlipidemia. In order to determine the patient
e analyzed to compute the average LDL cholesterol levels according to the patient’s



Fig. 7. Patterns mined using Care Pathway Explorer on a population of 14,036 patients with hyperlipidemia, who had a total of 70,379 diagnosis events and 97,189
medication events during their first year after diagnosis. This figure illustrates that few sequence patterns were found, even when setting the support to a low threshold such
as 0.005.
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or decreases in LDL removal; both lead to increases in LDL level. He
noted that it is well documented in the medical literature that sev-
eral antibiotic groups, including macrolides such as Azithromycin,
and fluoroquinolones such as Ciprofloxacin, can increase LDL
levels. Finally, glucocorticoids such as Cortisone and Prednisone
also increase LDL levels, as do many oral contraceptives containing
progesterone-related hormones.
Fig. 8. Examples of insights reached interactively when mining patterns from patients
patients, featuring 11,058 hyperlipidemia-related diagnoses and 20,693 medication eve
3.2. Hyperlipidemia with hypertension pre-condition

After filtering to patients with a hypertension pre-condition
before the initial hyperlipidemia diagnosis, there were 2800
patients after balancing, featuring 14,979 hyperlipidemia-related
diagnoses and 24,898 medication events.
with a diabetes pre-condition before the initial hyperlipidemia diagnosis (1,386
nts).



Fig. 9. Examples of insights reached interactively when mining patterns from patients with a hypertension pre-condition before the initial hyperlipidemia diagnosis (2,800
patients, featuring 14,979 hyperlipidemia-related diagnoses and 24,898 medication events).
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The patterns at the finest level-of-detail are shown at the top of
Fig. 9 using a minimum support threshold of 0.03. Here, these pat-
terns show events at the ingredient level (e.g. Simvastatin,
Ezetimibe) as well as detailed diagnoses (e.g. Pure
Hypercholesterolemia, Coronary Atherosclerosis). Like the patterns
common to patients with the Diabetes pre-condition, many pat-
terns are associated with positive outcomes. Focusing on negative
patterns, it is clear there are also negative side-effects of medica-
tions. However, while macrolides, such as azithromycin, were also
present in the diabetes cohort, the hypertension cohort also fea-
tures fluoroquinolones, such as Ciprofloxacin, which medical liter-
ature suggests can also increase LDL levels. There was no clear
clinical link to the use of Ibuprofen among negative outcome
patients, but it led to speculation that perhaps patients with higher
LDL cholesterol levels also tend to use higher levels of pain
medication.

4. Conclusions

As mentioned, some of the patterns were initially surprising to
the clinical researcher. He suspects that many of the prescribers of
certain medications are not aware that there may be side effects
associated with raising LDL levels. In fact, only after examining
medical literature was Dr. Sorrentino able to confirm the link
between treatments featured in the negative patterns and higher
LDL levels.

While this provides evidence that Care Pathway Explorer leads
to insights, there remains future work to address certain limita-
tions. For instance, there are still scalability issues with the mining
algorithm. Even though our approach uses a computationally effi-
cient bitmap-approach, large datasets with many concurrent
events will slow down the algorithm. We are investigating the pos-
sibility to deploy the Frequent Pattern Analytics in a cloud-based
distributed architecture, which is compatible with the hierarchical
aspects of the algorithm. Addressing this scalability issue will also
help determine the efficacy of our approach in settings where
real-time decision support is needed.

Another issue is that the analytics currently require manual
specification of certain parameters, such as the support threshold.
While users can interactively specify these parameters, users must
wait for the analytics to finish before finding out how many pat-
terns the parameters result in. We plan to improve this by provid-
ing scented widgets [32] that inform the users how many patterns
their choices may lead to before they commit to a specification.

While we have provided a long-term case study of the system,
additional validation is required to fully understand the implica-
tions of mining care pathways and for determining how such tech-
niques can be used for more than validating known findings. We
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plan to deploy and evaluate the system with more datasets and
case studies to better understand the role of these technologies
in clinical decision support.

Another potential issue is that clinical data in practice may con-
tain redundant or erroneous data that may have implications on
the resulting analysis [38]. While addressing these issues is beyond
the scope of our paper, Care Pathway Explorer has been tested with
real-world EMR data with success. Furthermore, tools to interac-
tively mine and visualize EMR data may expose data quality issues
that might have otherwise left hidden in the database. Care
Pathway Explorer also currently focuses on finding patterns among
clinical events of a temporal nature. However, there is an opportu-
nity to determine how these analytics can be expanded to handle
other types of patient information (e.g. age, gender, ethnicity) are
needed to see if stronger correlations could be found for specific
patient profiles.

Despite these current limitations, our results suggest that Care
Pathway Explorer, which automatically combines frequent
sequence mining techniques with advanced visualizations, sup-
ports the integration of data-driven insights into care plan tem-
plates. As institutions evolve to handle the creation of more
personalized care plan templates, these techniques will be valuable
to ensure those new templates reflect best practices learned from
past treatment actions and associated outcomes on similar
patients.
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