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     Breast, Prostate, Colorectal and Other Cancers and Tumors
     Breast, Prostate, and Other Cancers and Tumors
     Cardio-Respiratory Failure and Shock
     Cellulitis, Local Skin Infection
     Cerebral Palsy
     Chronic Obstructive Pulmonary Disease
     Cirrhosis of Liver
     Colorectal, Bladder, and Other Cancers
     Congenital/Developmental Skeletal and Connective Tissue Disorders
     Congestive Heart Failure
     Coronary Atherosclerosis/Other Chronic Ischemic Heart Disease
     Dementia Without Complication
     Diabetes with Neurologic or Peripheral Circulatory Manifestation
     Diabetes with Renal Manifestation
     Disorders of the Vertebrae and Spinal Discs
     Drug/Alcohol Abuse, Without Dependence
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Fig. 1. An overview of INFUSE, a visual analytics tool that supports users to understand the predictive power of features in their
models. Each feature is ranked by various feature selection algorithms, and the ranking information is visualized in each of the three
views within the system. On the left, the Feature View provides a way to visualize an overview of all features according to their rank
using a variety of layouts. On the top-right, the List View provides a sorted list of all features, useful for selections. On the bottom-right,
the Classifier View provides access to the quality scores of each model. Each of the views are coordinated, and users can brush
between all three views.

Abstract— Predictive modeling techniques are increasingly being used by data scientists to understand the probability of predicted
outcomes. However, for data that is high-dimensional, a critical step in predictive modeling is determining which features should be
included in the models. Feature selection algorithms are often used to remove non-informative features from models. However, there
are many different classes of feature selection algorithms. Deciding which one to use is problematic as the algorithmic output is often
not amenable to user interpretation. This limits the ability for users to utilize their domain expertise during the modeling process.
To improve on this limitation, we developed INFUSE, a novel visual analytics system designed to help analysts understand how
predictive features are being ranked across feature selection algorithms, cross-validation folds, and classifiers. We demonstrate how
our system can lead to important insights in a case study involving clinical researchers predicting patient outcomes from electronic
medical records.

Index Terms—Predictive modeling, feature selection, classification, visual analytics, high-dimensional data

1 INTRODUCTION

The visualization research community has usually focused on devel-
oping techniques and systems to support the analysis of datasets, with
limited analysis of the relationship between datasets and the construc-
tion of models on top of them. However, there are a growing number
of data scientists interested in more than just interpreting their data:
they want to understand their data and predictive probabilities asso-
ciated with them. Providing visual support for this kind of task has
become important as many existing applications on the market and in
scientific settings need to solve problems that are predictive in nature,
e.g. prediction of customer behavior, diseases, drug effectiveness.
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Predictive modeling is defined as the process of developing a math-
ematical tool or model that generates an accurate prediction [10].
However, building an accurate predictive model is far from trivial.
First, modelers must construct cohorts, or distinct groups, to divide
their datasets into cases and controls. Then, they must use a feature
construction technique to define the feature vector. Next, they must
define the parameters for cross-validation to ensure the results are sta-
tistically valid and robust. Then, they need to choose a feature se-
lection algorithm to extract the informative features and include them
in a model. And finally, they need to choose a classifier to evaluate
the predictiveness of the model. For each of these decisions, there are
a variety of techniques for cohort construction, feature construction,
cross-validation, features selection, and classification to choose from,
and there are currently no systematic guidelines to decide which al-
gorithms are most appropriate for which types of datasets. Making
the wrong choices can cause predictive models to fail. Kuhn and John
argue that many predictive models fail because, “predictive modelers
often only explore relatively few models when searching for predictive
relationships [...] due to either modeler’s preference for, or knowledge
of, or expertise in, only a few models or the lack of available software
that would enable them to explore a wide range of techniques” [10].
We use these current limitations as motivation to research how visual
analytics may improve the process of predictive modeling.
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Fig. 2. Steps of a typical predictive modeling pipeline. For each step, we provide the details of the running example we use throughout the paper.

Our proposed research focuses on an important step in the pre-
dictive modeling pipeline: feature selection. When data is high-
dimensional, feature selection algorithms are often used to remove
non-informative features from models. Again, the analyst is con-
fronted with the decision of which feature selection algorithm to uti-
lize, and even if the analyst decides to try out multiple types, the algo-
rithmic output is often not amenable to user interpretation. This limits
the ability for users to utilize their domain expertise during the mod-
eling process. To improve on this limitation, we developed INFUSE
(INteractive FeatUre SElection), a novel visual analytics system de-
signed to help analysts understand how predictive features are being
ranked across feature selection algorithms, cross-validation folds, and
classifiers. We describe the tasks associated to the feature selection
and understanding process and provide a design rationale for our solu-
tion. We also demonstrate, through case studies, how the system can
lead to important insights for clinical researchers predicting patient
outcomes from electronic medical records.

Concretely, our contributions include:

• A design and implementation of a predictive modeling explo-
ration system, INFUSE, for understanding how predictive fea-
tures are being ranked across feature selection algorithms, cross-
validation folds, and classifiers.

• An Interactive Model Builder, where users can create customized
models based on insights reached with INFUSE, and then have
their results evaluated in comparison to automated methods.

• A case study of domain experts using INFUSE to explore predic-
tive models in electronic health records.

2 MOTIVATION

2.1 Predictive Modeling in Healthcare
Predictive modeling is a common and important methodology used in
medical informatics and healthcare research. For instance, it can be
used to detect diseases in patients early before they progress [3] and
to personalize treatment guidelines to understand which populations
will benefit from an intervention [8]. In order to derive such insights
and build successful predictive models, it is common for healthcare
researchers to implement, evaluate, and compare many models with
different parameters and algorithms. A common workflow for pre-
dictive models is a 5-step process, illustrated in Figure 2: (1) cohort
construction, (2) feature construction, (3) cross-validation, (4) feature
selection, and (5) classification. There are currently few tools that sup-
port this complex workflow for predictive modelers.

A recent platform, PARAllel predictive MOdeling (PARAMO) [13],
enables users to specify a small number of high-level parameters to
support this 5-step workflow. PARAMO then uses Map-Reduce to ex-
ecute these many tasks in parallel. After the models have been con-
structed and evaluated by classifiers, users can compare area under
curve (AUC) scores of different models and select the ones with the
highest predictive power. While this ability to construct and evaluate
models at scale is an important breakthrough for clinical researchers,

the clinical experts are still left out of the loop at each of these 5 stages,
as each of the algorithms act as a black box.

This type of workflow limits the ability of clinical researchers to use
their domain knowledge to assist in the model building phase. While
multiple models may have similar performance in terms of prediction
accuracy, there is a desire to ensure that models with more clinically
meaningful features are selected [5].

2.2 Running Example: Diabetes Prediction
In order to make our contributions concrete, we utilize a running exam-
ple from our case study. Our case study involves a team of four clinical
researchers interested in using predictive modeling on a longitudinal
database of electronic medical records. The research team consisted
of one MD researcher with a background in emergency medicine,
and three PhD researchers with backgrounds in healthcare analytics.
Their database features over 300,000 patients from a major healthcare
provider in the United States. The team is interested in building a pre-
dictive model to predict if a patient is at risk of developing diabetes,
a chronic disease of high blood sugar levels that causes serious health
complications.

From this database, the team constructs a cohort (Step 1) of 15,038
patients. 50% of these patients (7,519) are considered incident cases
with a diagnosis of diabetes. Each case was paired with a control pa-
tient based on age, gender, and primary care physician resulting in
7,519 control patients without diabetes. From the medical records of
these patients, they extract four meaningful types of features (Step 2):
diagnoses, lab tests, medications, and procedures. In total, there were
1,627,736 diagnosis events (6,709 unique types), 361,026 lab events
(193 types), 818,802 medication events (344 types), and 853,539 pro-
cedures (4,403 types). For our visualization, we only consider types of
features that were picked by feature selection algorithms which results
in 859 features to display.

Next, in order to reduce the bias of the predictive models, the team
uses 10 cross-validation folds (i.e. random samples) (Step 3) to divide
the population randomly into 10 groups. After cohorts, features, and
folds are defined, the clinical researchers are ready to use feature selec-
tion. The team has four feature selection algorithms implemented and
available to them (Step 4): these include Information Gain and Fisher
Score, which have been used extensively by the researchers, as well
as two new ones which were recently implemented by their technolo-
gists: Odds Ratio and Relative Risk. Finally, the team evaluates each
selected feature set as a model using four classifiers (Step 5): Logistic
Regression, Decision Trees, Naive Bayes, and K-Nearest Neighbors.

Typically, this team executes a pipeline of multiple feature selec-
tion algorithms, and chooses the model that ends up with the best
scores from the classifier. Although this team has an interest in em-
bedding domain knowledge into their models, their current platform
for running predictive models does not have a user interface where
users can view or edit the specific features that make up each model.
Therefore, resulting models are typically not interpretable by domain
experts, and do not support bringing in their medical expertise by pri-
oritizing or removing features that may not be relevant to the disease
they are modeling.
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Fig. 3. An overview of INFUSE, a system for interactive feature selection. On the left, the Feature View provides a way to visualize an overview
of all features grouped by type and then sorted by importance. The color key for the feature types and subtypes are shown at the bottom. The
buttons and combo boxes at the bottom can be used to switch layouts and define the axes of the scatterplot view shown in Figure 6. On the
top-right, the List View provides a sorted list of all features, useful for selections. This list can be filtered using the search box above. Currently only
features containing the term “gl” are shown. The remaining features are sorted by the number and position of the search term occurrences. On the
bottom-right, the Classifier View (Figure 7) provides access to the quality scores of each model. Users can also select features and build custom
models with the Interactive Model Builder.

2.3 Task Analysis
The data analysis team initially expressed an interest of having a vi-
sual analytics system to aid them in making sense of the complex in-
formation generated by the modeling pipeline. During our interviews
we agreed to focus on the feature selection and classification steps,
as they needed visualizations to reason about the effects of choosing
different combinations of the available algorithms. Without such visu-
alizations, the researchers ability to choose among different algorithms
is ineffective.

Through our interactions with the analysts we derived three main
tasks that guided the design of INFUSE:

Task1 - Comparison of feature selection algorithms. In data sets
with thousands of features, it is important to have a quick way to
understand how feature selection algorithms rank different fea-
tures differently. Some of the typical questions the researchers
ask are: “Which features are consistently ranked highly by all
the algorithms?”; “How much do the algorithms differ in their
ranking?”; “Are there features that have a high rank with some
algorithms and a low rank with some others?”; “How robust are
the rankings with respect to different data samples?”

Task 2 - Comparison of classification algorithms. The output of
each feature selection algorithm is used to feed a series of clas-
sification algorithms. At the end of this process, the user is left
with a F ⇥C number of performance comparisons, where F is
the number of feature selection algorithms and C the number of
classification algorithms. Typical questions our researchers ask
are: “Which combinations of feature selection and classification
algorithms give the best scores?”; “Are there feature selection

algorithms that score consistently better across the set of clas-
sification algorithms?”; “Are there classification algorithms that
score consistently better across the set of feature selection al-
gorithms?”; “Which sets of features are selected in the model(s)
that give the highest performance?”

Task 3 - Manual selection and testing of new feature sets. Related
to the last question of Task 2, the researchers see value in being
able to add or remove features of interest from models. This
is desired because there can be additional domain-relevant
knowledge, beyond model performance, to introduce a desired
feature or remove an undesired one. Typical questions our
researchers ask are: “How does the performance of the model
increase or decrease if I remove or add these features?”; “How
does a new model compare to the models automatically built by
the system?”

INFUSE was designed to support these three tasks by providing a
visualization of large sets of features and how these features are used
by the modeling algorithms. After several design iterations, we con-
verged on a visual design where features are first-class citizens of the
visual representation: that is, each visual object in the main view rep-
resents a feature and its design and layout reflects information obtained
from the algorithms. A representation centered on features aligns well
with the analysts’ mental model and makes features easily identifiable
through their names. Each feature, in fact, represents real-world enti-
ties like medications, lab tests and diagnoses, that have rich semantics
and can be easily identified and understood by domain experts.



3 RELATED WORK

While visualization of multidimensional data has traditionally focused
more on the visualization of the data space, visualizing data features
has important applications in real-world scenarios; especially when
confronted with hundreds or even thousands of dimensions. In this
context, visualization helps data analyst making sense of the feature
space while including their background knowledge in the process. Vi-
sual feature selection can, for instance, help rank features according to
predefined scores, detect similarities among dimensions (thus gauging
intrinsic dimensionality of feature spaces), merge or combine features
into composite features. In the following we review visualization lit-
erature that consider the specific problem of visualizing large sets of
features.

3.1 Visual Feature Selection

Several approaches to feature selection and dimensionality reduction,
in general, exist in visualization. The early work of Guo [7] introduced
the idea of visualizing relationships between features sets. His system
is based on an interactive matrix view where rows and columns repre-
sent features and the cells are colored according to feature similarity
(calculated as entropy and c2). The matrix is automatically sorted to
allow selection of subspaces (feature subsets) where data shows inter-
esting clusters. Visual hierarchical dimension reduction [20] allows
detection and grouping of similar features as well. The technique is
based on a hierarchical clustering algorithm which clusters dimensions
in terms of their similarity and present them in a sunburst visualization
[22]. Users can interactively choose an aggregation level and use the
aggregated dimensions to display data with the reduced set of dimen-
sions. Johansson and Johansson [9] present an integrated environment
based on parallel coordinates visualization where the number and or-
der of dimensions (axes) presented at any time is guided by a ranking
algorithm that takes into account associations as well as intrinsic inter-
estingness of each feature to interactively choose how many features
to visualize. Similar in spirit is the rank-by-feature framework [14]
in which the data features are organized, ranked and visualized in 1D
and 2D visual representations (e.g. histograms, bar charts and scat-
terplots). The user can for instance inspect a matrix of feature pairs,
ranked by one of the available ranking functions, and single out those
that show interesting associations. A similar mechanism is also used
in scagnostics [21] a quality metric approach [4] that ranks axis pairs
according to the pattern/shape they create in a scatterplot visualization.

More similar to the solution presented in this paper are visualiza-
tions that focus on plotting dimensions as data points in the visual rep-
resentation (rather than, for example, as axes of a visualization where
the data items represent records of a data table). Value and Relation
Display visualizes data features as icons in a scatter plot visualization
[23]. The icons are positioned using a multidimensional scaling al-
gorithm which positions dimensions with similar distributions close
together. The icons are designed to represent the distribution of the
data values within the feature. Such a display allows to detect groups
of similar dimensions and to construct multidimensional visualizations
by subsetting the original feature space. Brushing Dimensions [18] is
a similar approach where data features are plotted as dots in a scatter
plot using descriptive statistics as axes (e.g. variance, median, kurto-
sis). The plot is paired with a data item scatter plot which allows for
data and feature linking and exploration.

All of the methods described above are based on the calculation of
statistical parameters from the data as a way to characterize and ex-
pose relationships between the features. Our approach differs in that
INFUSE interacts directly with feature selection and classification al-
gorithms to help in the discovery of predictive feature sets. A similar
approach is found in SmartStripes [11], a visual analytics system that
allows tight interaction between feature selection algorithms and visu-
alization. Our system differs in that our focus is on the comparison of
the output of multiple feature selection algorithms rather than a single
one.

3.2 Visualization in Predictive Modeling
Visualization has also been used to aid in the creation of predictive
models, not only in the selection of features that might be helpful in
constructing such models. Visual construction and assessment of de-
cision tree models have been the subject of a good number of works
in the field. Ankerst et al., introduced the idea of using pixel-based
visualization as a way to manually construct decision trees by giving
the user the ability to observe class distributions within each node and
to interactively select splitting points [1, 2]. A similar idea is pro-
posed in PaintingClass a visualization technique to manually build a
decision tree through interaction of parallel coordinates and multidi-
mensional scaling techniques to identify coherent groups of multidi-
mensional data [17]. More recently, BaobabView has been presented
as a system to inspect and validate a classification model through a tree
representation. The paper presents a thorough analysis of the number
of tasks that visualization can support in this area and how they are
covered by the proposed system [19].

While all the aforementioned systems focus largely on decision
trees, visualization has been used in other classification and regres-
sion systems that leverage other prediction models. The iVisClassifier
[6] for instance uses linear discriminant analysis (LDA), a supervised
dimensionality reduction method, to project multidimensional data in
a scatterplot visualization taking into account information provided
by the data labels. The technique allows to visually link the high-
dimensional structure to the low-dimensional representation and build
clusters. The clusters are then used to classify new data that is pro-
gressively introduced into the system to refine the model. Steed et al.,
in their cyclone trend analysis provide a parallel coordinates visualiza-
tion that leverage computational analysis to identify features with high
predictive power in stepwise regression tasks and allows to build pre-
dictive models for multidimensional climate data [16, 15]. Recently,
a visual analytics system for regression analysis has been proposed by
Mühlbacher and Piringer [12]. The system is more similar to our work
in nature as it also focuses on the predictive power of feature sets and
guides the user in the predictive modeling process. The main differ-
ence between this work and ours is our focus on classification rather
than regression models and the use of multiple feature selection and
classification models to better understand how features score across
multiple models.

4 INFUSE
In this section, we describe the design of INFUSE, which aims to as-
sist predictive modelers with the tasks introduced in Section 2.3. By
providing visualizations for users to interpret the results of feature se-
lection algorithms, as well as the ability to customize the models with
domain knowledge that may have been missed by the automated algo-
rithms, INFUSE provides a user-centric way of manipulating predic-
tive models.

4.1 Data and Design
We provide a brief overview of data types utilized by the system. A
predictive model, in our setting, is a model trained and validated with
machine learning using a high number of features as an input to train
the model. These features are the primary data items of INFUSE. Each
feature has a label representing the feature name (e.g. Diabetes), a cat-
egory to which the feature belongs to (e.g. Diagnosis), and a subtype
(e.g. Problem List, the health problems that led to the diagnosis).

Feature selection algorithms receive as an input the whole set of
existing features and return a subset of features selected and ranked
according to their estimated predictive power. Since in our setting
we use the output of multiple algorithms at once, each feature can
further be described by the rankings they receive from all these algo-
rithms (where features that are not selected are marked as unranked).
Furthermore, since cross-validation is used, each feature actually gets
ranked multiple times by each algorithm, leading to a total number
of #feature selection algorithms⇥ #folds ranks that quantitatively de-
scribe each feature.
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Fig. 4. (a) The glyph representation of a feature in the INFUSE sys-
tem. (b) Multiple models for each feature are represented as model

sections. In this example, the feature is divided into four sections, as
it was ranked by four feature selection algorithms (Information Gain,
Fisher-Score, Relative Risk, and Odds Ratio.). (c) Each section is fur-
ther divided into fold slices representing each of the cross-validation
folds. Each fold slices features a inward-filling bar that represents the
rank of this feature in that fold. A longer bar implies the feature has a
better rank. If no bar appears, the feature was unranked in the fold, and
thus did not meet the importance threshold.
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Fig. 5. Different glyph designs. (a) shows fold slices with bars growing
from perimeter to center whereas (b) grows from center to perimeter. (c)
shows a typical starburst glyph and (d) shows a matrix using luminance
to show the ranks. Note that in (b) and (c) it is difficult to see that this
feature is unranked in the third fold from the right in the top left quadrant.
The values in (c) are difficult to read because there is no reference to
how big the values are. Luminance, as used in (d) is a harder perceptual
attribute for users to interpret and distinguish than length and area are,
as used by the other glyphs.

The predictive models built using the output generated by feature
selection also provide useful information that we use in our system.
Each feature set generated by the process described above is used as
an input to a classification algorithm. The algorithm builds a model
that corresponds to the specific pair of feature set and classification
algorithm used for its training. The classifier, in turn, can be described
in terms of its performance using the Area Under Curve (AUC), a
measure that is commonly used by modelers to give numerical per-
formance scores to models [10].

The primary goal of INFUSE is to visualize this information so that
users can understand the predictive power of features in their models.
The user interfaces is organized around three main coordinated views
as shown in Figure 3: the Feature View provides a way to visualize an
overview of all features providing information about their attributes
and ranking received from feature selection; the List View provides a
sorted list of all features to get easy access to their labels and to assist
the user in searching features according to some predefined criteria
like their name or category; the Classifier View provides access to the
quality scores of each model built using the process described above.
The views are coordinated so that selections in one view are propa-
gated to all the other views. In the following we provide additional
information about the design of each view.

4.2 Feature View
The primary component of INFUSE is the Feature View, a zoomable
visualization that displays all features as glyphs. Each glyph repre-
sents a feature from the original data set and is designed to provide
the information outlined above. The main purpose of the feature view

is to allow comparison between features and detection of interesting
commonalities and differences in terms of how the algorithms rank
them. The view allows the user to display the feature set according to
two different configurable layouts: a grid layout (the default), which
favors legibility, and a scatter plot layout which aims at laying out and
grouping the features according to various statistics we collect from
the ranks. In the following sections, we describe the design of the
glyph as well as the different layouts.

4.2.1 Feature Glyph Design

As described in Section 2.1, the features are ranked by multiple fea-
ture selection algorithms and across multiple cross-validation folds.
INFUSE’s glyph design embeds all of this information in a circular
glyph that shows all the rankings obtained from each algorithm/fold
pair. As shown in Figure 4(a), the glyph is divided into equally-sized
circular segments; where each segment represents one of the ranking
algorithms. For instance, in Figure 4(b), since the feature was ranked
by four feature selection algorithms, the circular glyph is divided into
four sections. Each of these sections are then divided further into a
fold slice for each cross-validation fold. For instance, in Figure 4(c),
each feature selection algorithm was executed on 10 cross-validation
folds, therefore there are 10 fold slices.

Within each fold slice, there is an inward-growing bar (that is, start-
ing from the perimeter and growing towards the center) that represents
the rank of the feature in a particular fold. For example, in Figure
4(c), the feature is higher ranked in Fold 3 than in Fold 4 as the bar
in Fold 3 stretches closer towards the center than in Fold 4. Features
that are unranked, because their scores are too low to meet the mini-
mum threshold requirement of the algorithm, are represented as empty
slices with no bars. We designed fold slices with inward-growing bars
on purpose to help distinguishing between slices with empty values
from those with low values. During our design iterations we realized
in fact that outward pointing bars would make this distinction too hard
to make. Since the information of whether a features is picked up by
an algorithm is crucial for its interpretation we decided to opt for this
design.

Multiple glyph designs were considered and tested within INFUSE.
For instance, Figure 5(b) shows an example of a glyph where the fold
slices grow from the center towards the perimeter. This makes it dif-
ficult to identify fold slices with poor ranks. Consider the situation
where there is a lowly-ranked feature only ranked in one fold slice
section. When zoomed-out, the glyph would just appear as a circle
with a dot in the center, and the user would not know which model or
fold ranked the feature. Furthermore, it is difficult to see in which fold
a feature is unranked when the surrounding models rank the feature.
Other glyph designs that were tried involve a star glyph (Figure 5(c))
and a matrix glyph (Figure 5(d)). The star glyph was less effective
as users were not afforded a reference point for the maximum rank-
ing and the design leads to some visual artifacts (like high density in
the center and lower density in the outer part). The matrix glyph was
less effective, as perceiving differences is more difficult when using
luminance than length and area as we do in our final design.

Users can gain more details about each section and slice by hover-
ing over the region of interest to view an informative tooltip. Further-
more, an overview key is available to remind users of the position of
each model type. The background color of the glyph corresponds to
the subtype of the feature and a color key can also be shown as a ref-
erence to remember the meaning of the color coding (see bottom-left
corner of Figure 3).

4.2.2 Ranked Layout

The first layout available to users is the ranked layout, which arranges
glyphs by their feature type, and sorts them by their overall impor-
tance. The name of the feature type is shown at the first position in
the group, after that the features are laid out row-first in a grid-like
manner, as shown in Figure 3. This space-filling approach results in
features that are always visible without overlaps.
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Fig. 6. Different axis combinations for the scatter-plot layout. In (a) the average rank is plotted against the pick count. Most of the features appear
in the lower half because features are rarely picked by more than two algorithms in this example. The bottom-right shows features that are only
chosen by two models but were ranked very high by them. (b) shows the median rank plotted against the importance. Notice that the plot looks
similar to (a) since importance is a combination of the axes from (a). The axes in (c) are best rank versus average rank. Features can only appear
below the diagonal. The standard deviation of the ranks is plotted against the importance in (d). The peak to the bottom right corner consists of
features that are rarely picked and therefore have lower variance. The peak to the top right consists of features that are consistently high ranked.

Features within a group are sorted by their importance. Importance
is computed as average rank with penalized unranked features:

rankbest = min
m2M⇥V, f2F

[rankm( f )]

i( f ) =
1

|M⇥V | [2 · rankbest ·unrankedM⇥V ( f )+ Â
m2M⇥V

rankm( f )]

where M is the set of models, V is the set of cross-validation folds,
F is the set of features, rankm( f ) is the rank of a feature f in the
combined model and cross-validation fold m, and unrankedM⇥V ( f ) is
the number of such combined models that did not choose f . Assume
rankm( f ) = 0 for unranked features f in the combined model m only
when computing i( f ). Note that a small value for i( f ) means higher
importance. The optimal value is 1.

4.2.3 Scatterplot Layout
The second layout available to users is the scatterplot layout, where
users can select choices for both axes of the scatterplot. The choices
for axes include:

• the average rank of a feature
(ignores unranked folds and models)

• the pick count of the number of combined models
and cross-validation folds that picked the feature

• the importance of a feature (defined above)

• the best rank of the feature

• the median rank of the feature
(ignores unranked folds and models)

• the standard deviation of the feature’s ranks
(ignores unranked folds and models)

By default, the average rank is chosen for the horizontal axis and
the pick count is chosen for the vertical axis, as shown in Figure 10.
This combination of axes led to the most insights during the case stud-
ies. However, if users choose to select different axes or pivot to a
different layout, animation is used for the transition. By using slow-in
and slow-out animation, users are given time to anticipate the move-
ment direction of the feature, and are able to track features during the
transition easily.

4.2.4 Interaction
The Feature View provides a number of interactions. Zooming and
panning enables a user to get an overview of the displayed data and
focus on the details of a small number of glyphs. This exploration can
be reset by clicking on the “Reset View” button, or double clicking on
the background. Double clicking on a feature glyph zooms in on the
feature so that it fills the viewport. In addition, a tooltip is shown when
a user hovers the mouse over a glyph. This tooltip provides informa-
tion about the name, type, and subtype of the represented feature, as
well as all of the statistical information used for the scatterplot lay-
out. Hovering over a fold slice in the glyph gives further information
about the feature selection algorithm, the cross-validation fold, and
the feature’s rank in question. In order to select features for interactive
model building (see Section 4.5) the user can click on glyphs to toggle
the selection or use a lasso gesture to select a group of features. As
mentioned in the previous section, users can change the layout of the
glyphs with the buttons below the Feature View.

4.3 List View
A simple yet important view of features is the List View, which pro-
vides a sorted list of all features, useful for selecting features by name.
Each list item contains the name of the features along with its glyph.
The selection of a feature can be toggled in the list by clicking its list
item. As the selection of features is linked between views, this sorted
and labeled view supports users finding particular features of interest
and highlighting them in the complementary views.

The list view can be sorted in a few different ways. By default,
features are first sorted by the type of the feature, then by its subtype,
and finally by its name. Users can also sort the list by selection, which
means currently selected features are displayed at the top and the un-
selected features appear after them. Within these groups, the features
are then sorted by their importance.

In addition to sorting, a user can filter the list view via the search
box on the top. Search terms are separated by white-spaces and the list
view shows all features that contain all search terms in the name, type,
or sub-type. The results are ranked by the sum of the inverse positions
of the search terms within the feature description. This favors terms
occurring at the beginning of the feature’s name and terms that occur
multiple times in one feature description (see the top right panel of
Figure 3 for an example query).

4.4 Classifier View
The Feature View and the List View both focus on supporting users
to interpret the rankings of features across multiple predictive models.
However, it is also important for users to understand the quality of each
model in predicting the appropriate outcome. The Classifier View,
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Fig. 7. The Classifier View displays the results of the classification algo-
rithms for all models. Rows represent feature selection algorithms and
columns represent classification algorithms. A more detailed descrip-
tion of the cells can be seen in Figure 8. The currently selected model
is highlighted in orange, and the results for the same fold in different
feature selection algorithms are highlighted in yellow. When users se-
lect a model, the features that make up the model are highlighted in the
Feature and List views.
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Fig. 8. Each cell in the Classifier View represents the scores of a
particular model by a particular classifier. On the left, there is a bar
for each of the validation folds. The height of each bar corresponds
to the AUC score for each fold. Immediately to the right of the fold
bars, the thicker and darker bar and its height represents the average
value across all folds. This bar also features an error bar depicting the
standard deviation across the folds. Finally, to the right of the bars, there
is a numerical representation of the average AUC score.

shown in the bottom-right panel of INFUSE, is where the quality of
each the predictive models can be analyzed.

Typically, predictive models are evaluated using classification al-
gorithms which provide an AUC score (area under ROC curve, the
sensitivity as function of the false positive rate). Perfect models will
have an AUC score of 1, whereas random guessing will have an AUC
score of 0.5. The Classifier View was designed to show AUC scores
for each model and fold.

As illustrated in Figure 7, each row of the Classifier View repre-
sents the predictive model that resulted from each feature selection
algorithm. Each column represents a classification algorithm. Mul-
tiple classifiers are used because there are a variety of techniques to
evaluate models, and in order to avoid biases, INFUSE provides the
ability to compare the output from multiple classifiers.

Each cell, as shown in Figure 8, has several components. On the
left, there is a bar for each of the validation folds. The height of each
bar corresponds to the AUC score for each fold. There is also a slightly
thicker and darker bar immediately to the right of the fold bars, and
its height represents the average value across all folds. This bar also
features an error bar depicting the standard deviation across the folds.
Finally, to the right of the bars, there is a numerical representation of
the average AUC score. As this information is important for predictive
modelers to reason about the quality of models, these values are given
visual prominence. The bars, however, can be used to also reason
about the quality across all folds.

Rows are sorted by the average AUC scores across all classification
algorithms, so more accurate predictive models appear at the top of
this view. Users can interact with this view in several ways. Clicking
on a fold bar selects all features that were a part of this model and
highlights them in the List and Feature views. The selected fold bar
is highlighted in orange, and other scores this fold received by the
other classifiers are highlighted in yellow so that they can easily be
compared (as shown in Figure 7.)

4.5 Interactive Model Builder
One of the most important aspects of INFUSE is that in addition to
allowing the comparison of models, it also enables the creation of new
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Fig. 9. INFUSE ’s Interactive Model Builder allows users to select sets
of features and measure its quality. Selected feature glyphs are high-
lighted by saturating their color. The List View is sorted to show the
selected features by their importance. After a user has made their se-
lections, they can evaluate their model by clicking the “Evaluate Model”
button. This adds a new blue row to the the Classifier View, showing the
results of the evaluation for the user-defined model.

models based on insights. Users can select features for model building
in a variety of ways. They can select all of the features from existing
models by clicking on a model in the Classifier View. This will high-
light and select all of the features that were used in the model. Users
can then augment these lists, or start from an empty set, by select-
ing individual features when clicking on them in the Feature or List
view. In order to select multiple features, a lasso selection technique
is available in the Ranked and Scatterplot layouts.

After a feature set has been collected, INFUSE can automatically
evaluate the predictive performance of the user-defined model. By
clicking the “Evaluate Model” button, the new model is scored across
all cross-validation folds and classifiers, and the results are added in
the Classifier panel as a new blue row. In the example in Figure 9,
the user-defined model out-performed the automated models and it is
ranked at the top of the Classifier View. Note that the user created
model does not appear in the glyph. This is due to the fact that the
user does not need to rank the features in order to obtain a classification
result and that the feature set is equal for all cross-validation folds.

5 CASE STUDY

Throughout our paper, we have used a running example of a team of
clinical researchers using predictive modeling to classify patients at
high risk of developing diabetes. In this section, we describe how
INFUSE has led to a variety of insights when exploring the features of
the models.

5.1 Insight 1: Data issues
When the clinical researchers learned of INFUSE’s capabilities to
compare multiple feature selection algorithms, they decided to expand
their pipeline’s feature selection algorithms from 2 to 4. The team has
used Information Gain and Fisher Score extensively in prior work, and
typically uses these same techniques due to their familiarity and past
success. Nonetheless, the diabetes dataset introduced in Section 2.2
was new to them, and they were unsure which techniques would be
the most appropriate. So, they asked their technologists to implement
two new techniques: Odds Ratio and Relative Risk.

After all four algorithms were available, they executed their mod-
eling pipeline using PARAMO [13] and connected the results to IN-
FUSE. Instantly, the team was surprised at the patterns that the visu-
alization made evident. The visualization indicated that there seemed
to be little agreement between their two old algorithms, and their two
new algorithms for the best features. The glyphs clearly indicated that
many of the features were highly ranked by two of the four feature se-
lection algorithms, and unranked by the other two, resulting in glyphs
resembling alternating half-circles, as shown in Figure 11. The team
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Fig. 10. The scatterplot view allows users to compare multiple types of rankings. In the case study, users became curious of the medication
features that were chosen by only half of the models. When reviewing these medications with domain experts, it became clear that features picked
by the upper-half algorithms were as clinically significant as those picked by the bottom-half. This indicates that merging results from feature
selection algorithms makes sense for this predictive model.

was quick to note that the resulting accuracy across all four models
were not significantly different, so this non-overlap would have proba-
bly gone unnoticed if the team just looked at resulting predictive scores
at the end of the pipeline as they typically do.

As INFUSE gave them the opportunity to examine multiple algo-
rithms at the feature-level, they were curious as to why this trend
of non-overlapping feature rankings occurred. They investigated the
scores associated with each feature rank and noticed that many of the
features had scores of • from the Relative Risk algorithm. It turned
out there was a bug within the Relative Risk implementation where a
divide by zero error could happen if a feature did not occur in any of
the control patients. After fixing this bug, they noticed that much of the
non-overlap still was evident. Looking more closely at the algorithms
provided a reason why the two new algorithms behave very differently:
they realized that both of the new algorithms only look at the presence
and absence of the feature between the case and controls, and do not
pay attention to the feature values in any other way (e.g. distribution
of values). This is in contrast to the Fisher Score and Information Gain
algorithms that take the actual feature values into account. This means
that for features that are present in both case and control groups in the
same proportion, there is no discrimination value.

One of the team members mentioned, “Each feature selection algo-
rithm captures different types of information. INFUSE allows you to
see what the effect of that information is being captured and gives you
insight into the robustness of your predictive model.”

As different algorithms will make sense for different purposes de-
pending on the dataset and goals, INFUSE provides an ability to in-
spect the features and determine which algorithms produce ranked sets
of domain-relevant features.

5.2 Insight 2: Clinically relevant features
After the data issues were solved, the researchers began investigating
the content of the predictive features. Using the scatterplot view, they
inspected all of the medications that were ranked by all feature selec-
tion algorithms and folds and found that they were antihyperglycemic
medications, which are common treatments to lower the blood sugar
of diabetes patients, and made clinical sense to be ranked high.

However, looking towards the center of the scatterplot, where the
features are only ranked by half of the algorithms and folds, the re-
searchers noticed a cluster of medications that had half-circle patterns
like those described above. This region is highlighted in Figure 10. By
mouse-hovering these features to read their names, it became clear that

those ranked high by the upper-half of the circle (Information Gain and
Fisher Score) were as clinically relevant and similar as those ranked
by the bottom-half algorithms (Relative Risk and Odds Ratio). This
provided feedback that in predictive modeling it is not safe to assume
that one single feature selection algorithm is able to detect all pos-
sible interesting features and also that having a system like INFUSE
allows them to build a much richer picture of what kind of feature
sets may lead to effective modeling. Without such a tool they would
be restricted at evaluating one single algorithm at a time or, at best,
restricting the comparison to a small number of features.

After interacting with the system one of the team members said,
“If you just use one feature selection algorithm, you’re only getting
certain types of features. INFUSE gives you a guide to what you might
be missing. Using a combination type approach [with the Interactive
Model Builder] will lead to stronger predictive models.”

The clinical team is now going to re-think their strategy about how
they build predictive models and may consider using features by merg-
ing top ranked features from different types of feature selection algo-
rithms. The researchers are convinced that by merging features, in
addition to the interactive model building capability, their predictive
models will be improved.

Josua Krause

Fig. 11. The clinical researchers found an interesting pattern among
the glyphs indicating non-overlap of feature selection algorithm results.
These features were highly ranked by 2 of the 4 feature algorithms, and
unranked by the other 2, resulting in glyphs that resemble half-circles.



6 FUTURE WORK AND CONCLUSION

There remains a great deal of research to further improve the analytical
process of predictive modelers. INFUSE only focuses on the feature
selection step of predictive modeling. Each of the other steps would
benefit from a visual interface to explore and parameterize the pipeline
as well.

The search capabilities also have room for improvement by allow-
ing more complex queries like features with a given range of ranks or
features picked by a given algorithm, which would ease the task of
finding relevant features for a user. Also, expanding the range of the
search box to filter also in the Feature View may reduce the number
of overlapping glyphs in the scatterplot view. Other clutter reduction
techniques could also be available to users, such as a semantic zoom-
ing overlap resolution strategy that can jitter glyphs that overlap when
the view is zoomed in.

Finally, to date, this tool has been used extensively for predictive
modeling on clinical data. However, INFUSE was designed to be
domain-independent and can easily be used for other domains in need
of high-dimensional predictive modeling. Our future work includes
additional case studies in other domains to ensure the robustness of
our tools. This would also give the opportunity to explore the scal-
ability of the design. Typically, the number of cross-validation folds
is not more than ten. However, certain analysts may wish to com-
pare a larger number of feature selection algorithms which would de-
crease the amount of space available per algorithm in the glyph. While
similarly-ranked features would still appear visually alike, it may be-
come difficult to identify certain algorithms or folds without the help
of interaction. The overall number of features also plays a role in scal-
ability concerns.

In conclusion, predictive modeling techniques are increasingly be-
ing used by data scientists to understand the probability of predicted
outcomes. We present INFUSE, a tool that lets users interactively
create predictive models. Typically, the predictive modeling pipeline
leaves users out of the loop, and the algorithms operate as a black
box. By giving users the power to interact with the results of feature
selection, cross validation folds, and classifiers, INFUSE has shown
promise to improve the predictive models of analysts. We further
demonstrated how our system can lead to important insights in a case
study involving clinical researchers predicting patient outcomes from
electronic medical records.
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