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    Chapter 31   
 Data Driven Analytics for Personalized 
Healthcare       

       Jianying     Hu      ,     Adam     Perer      , and     Fei     Wang    

    Abstract     The concept of Learning Health Systems (LHS) is gaining momentum as 
more and more electronic healthcare data becomes increasingly accessible. The core 
idea is to enable learning from the collective experience of a care delivery network 
as recorded in the observational data, to iteratively improve care quality as care is 
being provided in a real world setting. In line with this vision, much recent research 
effort has been devoted to exploring machine learning, data mining and data visual-
ization methodologies that can be used to derive real world evidence from diverse 
sources of healthcare data to provide personalized decision support for care delivery 
and care management. In this chapter, we will give an overview of a wide range of 
analytics and visualization components we have developed, examples of clinical 
insights reached from these components, and some new directions we are taking.  

  Keywords     Data driven healthcare analytics   •   Learning health system   •   Practice 
based evidence   •   Real world evidence   •   Clinical decision support   •   Machine learn-
ing   •   Data mining   •   Data visualization  

31.1         Introduction 

 In recent years we have witnessed a dramatic increase of electronic health data, 
including extensive Electronic Medical Records (EMR) recording patient condi-
tions, diagnostic tests, labs, imaging exams, genomics, proteomics, treatments, out-
comes, claims, fi nancial records, clinical guidelines and best practices etc. 
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Healthcare professionals are now increasingly asking the question: what can we do 
with this wealth of data? How can we perform meaningful analytics on such data to 
derive insights to improve quality of care and reduce cost? 

 Healthcare Analytics needs to cover the whole spectrum including both 
Knowledge Driven Analytics and Data Driven Analytics. Knowledge driven 
approaches operate on knowledge repositories that include scientifi c literature, pub-
lished clinical trial results, medical journals, textbooks, as well as clinical practice 
guidelines. Traditionally the gold standard of evidence in healthcare has been pro-
duced through the randomized controlled trial process. Results of such trials get 
published and then healthcare professionals consult those publications to bring to 
the point of care nuggets of evidence that apply to the scenario at hand. This process 
of knowledge diffusion can take as long as 17 years [ 2 ,  10 ]. 

 Innovations such as Watson Discovery Advisor [ 32 ] can dramatically reduce that 
time frame to close the knowledge diffusion gap. In tools such as WDA, the deep 
NLP and Q&A capabilities such those developed in the original Watson Jeopardy 
machine are leveraged to teach the computer to learn medical domain knowledge 
from unstructured data captured in the knowledge repository, and then make intel-
ligent inference from such knowledge to bring the most relevant pieces of informa-
tion to the fi nger tips of the practitioners. 

 Complementary to this knowledge dissemination processing, data driven health-
care analytics is about making the computer learn from observational data collected 
in the process of delivering care. This is important because published guidelines 
typically target a single disease and the average patient, so by themselves don’t 
provide suffi cient insight into how to best manage a real world patient with multiple 
comorbidities and complex conditions. By tapping into the vast real world observa-
tional data collected at the individual patient level, we can leverage the collective 
experience of a healthcare delivery system, to extract insights that can be used to fi ll 
in that personalization gap, and in that process continuously enhance and refi ne our 
knowledge on best practices. Such insights are referred to as Practice Based 
Evidence, or Real World Evidence, and are at the center of the vision of “Learning 
Health Systems” advocated by the Institute of Medicine [ 11 ]. 

 The focus of this chapter is on data driven healthcare analytics. In line with the 
vision of LHS, the healthcare analytics research group at IBM has been working on 
applying advanced machine learning, data mining and data visualization tech-
niques in the context of real world healthcare data and use cases to build up a data 
driven healthcare analytics framework. An earlier version of this analytics frame-
work, called Intelligent Care Delivery Analytics (ICDA), was reported in AMIA 
2012 [ 6 ]. We have continued to expand this framework by adding more machine 
learning and visualization components since then, and expect to continue to do so 
in the future. 

 Figure  31.1  gives an overview of the current snapshot of ICDA. At the center of 
this framework is Patient Similarity Analytics. The objective of this component is to 
develop methodologies that can be used to identify patients who are similar to a 
patient of interest in a clinically meaningful way, so that insights derived from lon-
gitudinal records of the similar patients can be used to help determine personalized 
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prognosis and treatment plans for this specifi c patient. Building on and around this 
central component, we have developed a suite of analytics and visualization compo-
nents to address challenges and use cases encountered in different aspects of the 
care process, and deliver insights in an interactive, consumable manner.

   Throughout the rest of the chapter, we will describe some of the key elements, 
and provide concrete examples of novel algorithms that have been developed in this 
framework. Due to the limited space, we focus on describing the functionalities and 
high-level approaches of these analytics and visualization components. In-depth 
technical details and discussions can be found in the numerous publications cited 
throughout the chapter.  

31.2     Patient Similarity Analytics 

 Existing EMR systems typically store data in a manner that makes it diffi cult for 
clinicians to extract what is necessary to make clinical decisions at the point-of- 
care. Most of EMR systems are primarily used to record clinical events for book-
keeping and claim purposes as opposed to be used as a decision support tool for 
better diagnosis and treatment. Constructing a patient network with nodes repre-
senting patients and edges connecting clinically similar patients could be very help-
ful to such a clinical decision support system, as the physician can look at the 
treatments and disease condition evolutions of the similar patients to come up with 
a better care plan for the current patient. 
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  Fig. 31.1    Intelligent Care Delivery Analytics (ICDA) – the data driven healthcare analytics plat-
form at IBM research       
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 Besides decision support systems, there are also other areas in medical informat-
ics where such patient network could be very helpful. For example, Comparative 
Effectiveness Research [ 1 ], which is the direct comparison of existing health care 
interventions to determine which work best for which patients and which pose the 
greatest benefi ts and harms [w1]. In this case, if we can fi rst stratify the patients into 
different cohorts according to their clinical similarity, then CER can be performed 
on the patients within the same cohorts [ 13 ]. Under a similar setting, patient risk 
stratifi cation aims to stratify the patients according to their disease condition risks. 
This is a crucial step for effective management of patients because for patients with 
different risks, we may have different treatment plans. Furthermore, if we can con-
struct an undirected patient network using such patient similarity, we can expect to 
discover clinically meaningful insights such as disease evolution patterns and care 
or treatment patterns. 

31.2.1     Patient Similarity Metric Learning 

 While traditional patient cohort generation tools such as i2b2 [ 16 ] address some 
aspects of patient similarity, they are limited in that cohorts have to be identifi ed 
through database queries using a few pre-selected attributes. To fully realize the 
power of patient similarity analytics, a big data approach is needed where all 
known attributes about patients are taken into consideration, in order to account for 
all potential confounding factors. This poses two challenges. First, since the num-
ber of attributes can be very large (e.g., in the order of tens of thousands), how to 
defi ne distance, or similarity metric, in this high dimensional space is a challenging 
mathematical problem. Second, the notion of patient similarity is context depen-
dent. For example, the factors that are important for identifying similar patients in 
the context of determining best treatment for hyperlipidemia may be completely 
different from the ones for evaluating different chemotherapies for a cancer patient. 
To address these challenges, machine learning approaches called metric learning 
are needed to derive from data the most appropriate similarity metric, i.e., most 
important attributes along with the weighting factors for a specifi c clinical 
context. 

 Patient EMRs contain a large amount of features coming from heterogeneous 
sources, such as demographic information, diagnosis, medication, lab tests and so 
on and so forth. To facilitate the process of similarity learning, researchers have 
proposed constructing a profi le for each patient, which is a feature vector with the 
dimensionality equal to the number of different features. Before constructing such 
a vector, a time period of interest is defi ned, within which the features are aggre-
gated to obtain the entries in the patient profi le (e.g., the average value of a specifi c 
lab test, or the count of a specifi c diagnosis code). In this way, after profi ling, each 
patient is represented as a feature vector [ 27 ,  28 ]. 

 Local Supervised Metric Learning (LSML) is a supervised metric learning 
approach that has been proved to be useful in patient similarity evaluation [ 3 ,  23 ,  24 ]. 
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This algorithm was initially proposed in [ 30 ] for face recognition. The basic idea of 
LSML is to maximize the local separability of the data vectors from different classes. 

 We applied the LSML in the context of monitoring patients in the Intensive Care 
Unit (ICU) [ 3 ]. ICUs are data rich environments where patients are continuously 
being monitored for several aspects of their health. Alerts that can indicate the likely 
onset of an imminent adverse condition based on the behavior of patients’ temporal 
data provide important support mechanism for physicians in this environment. 
Accompanying those alerts with insight regarding the likely behavior of patient 
KPIs can further qualify and clarify them. In this setting, our goal is to retrieve 
patients who display similar evolution patterns in their ICU data to the patient being 
monitored and use the future trend of the cohort of similar patients to predict if the 
patient being monitored is going to experience a medical event within a specifi c 
time horizon. The insight provided to the clinician through the projections of the 
patient’s physiological data into the future could further clarify and qualify the gen-
erated alerts. The proposed approach and system were tested using the MIMIC II 
database, which consists of physiological waveforms, and accompanying clinical 
data obtained for ICU patients.  

31.2.2     Inference Over Multiple Similarity Networks 
for Personalized Medicine 

 Using patient similarity analytics methods such as the described above, one can 
construct patient similarity networks where each node represents a patient and the 
edge between a pair of patients represent the degree of similarity between the two 
patients represented by their key clinical indicators. In a recent work, we aug-
mented this patient similarity network with a drug similarity network, and devel-
oped a machine learning approach to make inferences over this heterogeneous 
network to derive Real World Evidence for personalized drug response prediction [ 36 ]. 
To compose the drug similarity network, we used chemical structure extracted 
from PubChem, and drug target protein information extracted from DrugBank [ 34 ]. 
Links between patients and drugs were then constructed to represent the prior asso-
ciations between patients and drugs, which were measured by the Tonimoto 
Coeffi cient between ICD9 diagnosis codes of patients and ICD9-format drug indi-
cations from MEDI database [ 33 ]. Finally, a machine learning technique called 
label propagation [ 31 ] was applied to infer, for any given drug, the likely effective-
ness of this drug on any of the patients who have not yet received this drug. 
Intuitively, this allows us to infer the likely response of a patient to a particular 
drug based on observations of how similar patients have responded to similar drugs 
in the past. Experimental evaluation results on a real-world EMR dataset of 110,157 
hyperlipidemia patients demonstrate the effectiveness of the proposed method and 
suggest that the combination of appropriate patient similarity and drug similarity 
analytics can help identify which drug is likely to be effective for a given patient.  
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31.2.3     CareFlow: Data-Driven Visual Exploration of Similar 
Patients 

 Patient similarity analytics can be combined with advanced visualization techniques 
to provide physicians with the most relevant information in a consumable manner. 
One example of such a tool is CareFlow, for the exploration of care pathways from 
similar patients. When a patient is diagnosed with a disease, their doctor will often 
devise a care pathway, a sequence of medical treatments to help manage their dis-
ease or condition. When doctors devise care pathways, they often must rely on their 
education, experience, and intuition [ 25 ]. The goal of CareFlow [ 17 ] is to leverage 
the rich longitudinal data found in Electronic Medical Records (EMRs) to empower 
clinicians with a new data-driven resource for the design of personalized care plans. 
Using the relevant clinical data of a specifi c patient, CareFlow mines the EMRs to 
fi nd clinically similar patients using our patient similarity analytics. CareFlow then 
visualizes all of the different care pathways that these similar patients have under-
gone, while providing context on which care pathways were successful and which 
were not. The resulting visualization supports the identifi cation of the most desir-
able and most problematic care plans.  

31.2.4     Mining Care Pathways from Data 

 In order to model the care pathways for the similar patient population, CareFlow mines 
the EMRs for relevant patient events. For each similar patient, CareFlow will extract 
records of performed treatments and their associated dates by querying the EMR data-
base for relevant medical events. The result of this query is a complex dataset describ-
ing the details of various treatments given to the entire similar patient population. 

 Of course, each similar patient underwent treatments at different points in time. 
In order to unify them, CareFlow aligns all treatments by the time at which each 
patient was fi rst diagnosed with the disease of interest. CareFlow defi nes the care 
pathway as the sequence of treatments after diagnosis. In addition to deriving care 
pathways, outcomes are also derived from the EMRs for each of these similar 
patients. By associating each care pathway with an outcome, it is possible to infer 
which care pathways lead to statistically better outcomes. CareFlow makes this out-
come information visually prominent to inform medical decisions.  

31.2.5     Visualizing Care Pathways 

 While a doctor may be able to make sense of a care plan for a single patient 
(e.g. [ 20 ]), doing so for a similar patient population is much more challenging. Care 
pathways may have a large number of different types of treatments, and the sequence 
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of these treatments often varies as well. CareFlow provides a visualization of the 
temporal sequence of treatments. As shown in Fig.  31.2 , treatments are represented 
as nodes and positioned along the horizontal axis, which represents the sequence of 
treatments over time. The diagnosis of a disease occurs on the far left of the visual-
ization, and treatments in the care plan extend to the right. The height of each node 
is proportional to the number of patients that took a given treatment. Link edges are 
also present to connect nodes from their previous and future nodes in the care path-
way. The visual elements are colored according to the average outcome of all 
patients represented by the node or edge. Elements that are colored green repre-
sented parts of the care plan where patients remained healthy, whereas elements that 
are colored red indicate care plans of patients who ended up in poor health.

31.2.6        Use Case: Congestive Heart Failure 

 This use case involves a doctor who has recently diagnosed a patient with conges-
tive heart failure and wishes to use CareFlow to examine the historical outcomes of 
possible care pathways. CareFlow connects to a longitudinal EMR database of over 
50,000 patients with heart conditions spanning over 8 years. 

 On the left-hand side of Fig.  31.2 , a summary of the patient’s relevant medical 
history is shown, including recent medications, symptoms, and diagnoses. In the 
center panel of Fig.  31.2 , a visualization of the care plans of the 300 most similar 

  Fig. 31.2    CareFlow’s visual interface. The  left panel  displays a summary of the patient’s relevant 
medical history. The  center panel  displays a visualization of the care plans of the 300 most similar 
patients. The  right panel  displays the factors associated with a selected subset of patients       
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patients is shown. The left-most node represents these similar patients at their point 
of diagnosis with heart failure. As the visualization extends to the right, the various 
treatment sequences of similar patients are shown. The care pathways are colored 
according to a continuous color scale,; pathways that are colored red implies most 
patients within that node ended up being hospitalized, whereas green pathways 
means most patients managed to stay out the hospital. 

 In addition to gaining an overview of all care pathways, a doctor can also focus 
on the most successful treatment plan. By selecting the appropriate button, the care 
plan that leads to the best outcomes for patients is highlighted. 

 CareFlow provides doctors with the ability to get more information about the 
patients who undertook a particular care plan. By selecting a Treatment node, doc-
tors can view a precise count of the number of patients the node represents, as well 
as the average outcome for these patients. In addition, the right panel of the interface 
displays summary information about a set of patients by displaying factors common 
to this cohort, as well as factors rare in this group.   

31.3     Predictive Modeling 

 Healthcare analytics research increasingly involves the construction of predictive 
models for disease targets across varying patient cohorts using observational data 
such as EMR. A common workfl ow for predictive models is a fi ve-step process: (1) 
cohort construction, (2) feature engineering, (3) cross-validation, (4) feature selec-
tion, and (5) classifi cation/model selection. We have developed novel machine 
learning and visualization methods to help address the challenges faced in each of 
these steps. 

31.3.1     Feature Engineering 

 Feature Engineering, which is about inferring phenotypic patterns from population- 
scale clinical data, is a core computational task in the development of personalized 
medicine. One important source of data on which to conduct this type of research 
are patient EMRs. However, the patient longitudinal EMRs are typically sparse and 
noisy, which creates signifi cant challenges if we use them directly to represent 
patient phenotypes. We developed a data driven phenotyping framework called 
Pacifi er (PAtient reCord densIFIER) [ 37 ], where we interpret the longitudinal EMR 
data of each patient as a sparse matrix with a feature dimension and a time dimen-
sion, and derive more robust patient phenotypes by exploring the latent structure of 
those matrices. Specifi cally, we assume that each derived phenotype is composed of 
a subset of the medical features contained in original patient EMR, whose value 
evolves smoothly over time. We propose two formulations to achieve such goal. 
One is Individual Basis Approach (IBA), which assumes the phenotypes are 
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different for every patient. The other is Shared Basis Approach (SBA), which 
assumes the patient population shares a common set of phenotypes. We developed 
an effi cient optimization algorithm that is capable of resolving both problems effi -
ciently. Pacifi er was validated on two real world EMR cohorts for the tasks of early 
prediction of Congestive Heart Failure (CHF) and End Stage Renal Disease (ESRD). 
Our results showed that the predictive performance in both tasks can be improved 
signifi cantly by the proposed algorithms (average AUC score improved from 0.689 
to 0.816 on CHF, and from 0.756 to 0.838 on ESRD respectively).  

31.3.2     Large Scale Feature Selection Algorithms 

 Another key challenge in developing risk prediction models from observational 
healthcare data is how to effectively identify, form the larger number (typically 
thousands to tens of thousands) of features the salient risk factors, i.e., the subset of 
features that are most predictive. Knowledge driven and data driven strategies refl ect 
two ends of the spectrum of risk factor identifi cation or feature selection. More 
specifi cally, a knowledge driven approach is based on evidence of varying quality, 
guidelines, and experts’ opinions, while a data driven approach is solely based on 
the observational data. We developed a hybrid strategy that starts with prior knowl-
edge, then extends to a more comprehensive model by selectively including an addi-
tional set of features that both optimize prediction and complement knowledge 
based features. In particular, we extended a sparse feature selection method called 
Scalable Orthogonal Regression (SOR) [ 12 ] to expand a set of knowledge driven 
risk factors with additional risk factors from data [ 22 ]. The method was designed 
specifi cally to select less redundant features without sacrifi cing the quality, for 
which redundancy is measured by an orthogonality measure added as a penalty term 
in the objective function. The approach was validated using a large dataset contain-
ing 4,644 heart failure cases and 45,981 controls. The proposed method was shown 
to identify complementary risk factors that are not in the existing known factors and 
can better predict the onset of HF. In other words, the combined risk factors between 
knowledge and data signifi cantly outperform knowledge-based risk factors alone. 
Furthermore, those additional risk factors were confi rmed to be clinically meaning-
ful by a cardiologist [ 22 ].  

31.3.3     Scalable Model Exploration 

 To develop an appropriate predictive model for healthcare applications, it is often 
necessary to compare and refi ne a larger number of models derived from a diversity 
of cohorts, patient-specifi c features, feature selection algorithms, and classifi ers/
regression methods. An effi cient and scalable computing platform is required to 
facilitate such large scale models exploration. To support this goal, we developed a 
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PARAllel predictive MOdeling (PARAMO) platform [ 15 ] which (1) constructs a 
dependency graph of tasks from specifi cations of predictive modeling pipelines, (2) 
schedules the tasks in a topological ordering of the graph, and (3) executes those 
tasks in parallel. We implemented this platform using Map-Reduce to enable inde-
pendent tasks to run in parallel in a cluster computing environment. Different task 
scheduling preferences are also supported. 

 We assessed the performance of PARAMO on various workloads using three 
datasets derived from the EMR systems in place at Geisinger Health System and 
Vanderbilt University Medical Center and an anonymous longitudinal claims data-
base. We demonstrate signifi cant gains in computational effi ciency against a stan-
dard approach. In particular, PARAMO can build 800 different models on a 300,000 
patient data set in 3 hours in parallel compared to 9 days if running sequentially. 

 This work demonstrates that an effi cient parallel predictive modeling platform 
can be developed for EMR data. Such a platform can facilitate large-scale modeling 
endeavors and speed-up the research workfl ow and reuse of health information.  

31.3.4     Visual Analytics for Predictive Modeling 

 When data is high-dimensional, feature selection algorithms are often used to 
remove non-informative features from models. Here the analyst is confronted with 
the decision of which feature selection algorithm to utilize, and even if the analyst 
decides to try out multiple types, the algorithmic output is often not amenable to 
user interpretation. This limits the ability for users to utilize their domain expertise 
during the modeling process. To improve on this limitation, INFUSE (INteractive 
FeatUre SElection) [ 9 ], was designed to help analysts understand how predictive 
features are being ranked across feature selection algorithms, cross-validation folds, 
and classifi ers.  

31.3.5     Use Case: Diabetes Prediction 

 In order to demonstrate the promise of visualizing predictive models, we describe 
an example scenario with clinical researchers interested in using predictive model-
ing on a longitudinal database of electronic medical records. Their database features 
over 300,000 patients from a major healthcare provider in the United States. The 
team is interested in building a predictive model to predict if a patient is at risk of 
developing diabetes, a chronic disease of high blood sugar levels that causes serious 
health complications. 

 From this database, the team constructs a cohort (Step 1) of patients. Fifty per-
cent of these patients are considered incident cases with a diagnosis of diabetes. 
Each case was paired with a control patient based on age, gender, and primary care 
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physician resulting in control patients without diabetes. From the medical records 
of these patients, they extract four meaningful types of features (Step 2): diagno-
ses, lab tests, medications, and procedures. Next, in order to reduce the bias of the 
predictive models, the team uses ten cross-validation folds (i.e. random samples) 
(Step 3) to divide the population randomly into ten groups. After cohorts, features, 
and folds are defi ned, the clinical researchers are ready to use feature selection. 
The team has four feature selection algorithms implemented and available to them 
(Step 4): these include Information Gain, Fisher Score, Odds Ratio and Relative 
Risk. Finally, the team evaluates each selected feature set as a model using four 
classifi ers (Step 5): Logistic Regression, Decision Trees, Naive Bayes, and 
K-Nearest Neighbors. 

 Typically, this team executes a pipeline of multiple feature selection algorithms 
and chooses the model that ends up with the best scores from the classifi er. However, 
while this approach allows the team to fi nd the model with the highest accuracy 
score, they do not have direct access to view the features that make up the model. 
This is the goal of INFUSE: to make those features automatically selected more 
visible.  

31.3.6     Visualizing Features 

 As described, the features are ranked by multiple feature selection algorithms and 
across multiple cross-validation folds. INFUSE’s visual design embeds all of this 
information in a circular glyph that shows all the rankings obtained from each 
algorithm/fold pair. As shown in Fig.  31.2  INFUSE (a), the glyph is divided into 
equally- sized circular segments; where each segment represents one of the rank-
ing algorithms. For instance, in Fig.  31.2  INFUSE (b), the feature was ranked by 
four feature selection algorithms, so the circular glyph is divided into four sec-
tions. These sections are then divided further into a fold slice for each cross-vali-
dation fold. For instance, in Fig.  31.2  INFUSE (c), each feature selection algorithm 
was executed on ten cross-validation folds, therefore there are tenfold slices. 
Within each fold slice, there is an inward-growing bar (that is, starting from the 
perimeter and growing towards the center) that represents the rank of the feature 
in a particular fold. For example, in Fig.  31.2  INFUSE (c), the feature is higher 
ranked in Fold 3 than in Fold 4 as the bar in Fold 3 stretches closer towards the 
center than in Fold 4. Features that are unranked, because their scores are too low 
to meet the minimum threshold requirement of the algorithm, are represented as 
empty slices with no bars. 

 The feature glyphs are displayed inside a zoomable visualization that allows 
users to fi nd the features of interest. For instance they can group all features by type 
(e.g. medication, diagnosis, lab type, as seen in Fig.  31.3  INFUSE) or display the 
features on a scatterplot (e.g. average of features vs how many times a feature was 
picked by an algorithm, as seen in Fig.  31.4  INFUSE).
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31.3.7         Finding Clinically Relevant Features 

 The following is an example of the types of insights that can be reached with 
INFUSE. When examining the scatterplot view (the top of Fig.  31.4  INFUSE), all 
of the medications that were ranked by all feature selection algorithms and folds 
and found that they were antihyperglycemic medications, which are common treat-
ments to lower the blood sugar of diabetes patients, and made clinical sense to be 
ranked high. 

 However, looking towards the center of the scatterplot, where the features are 
only ranked by half of the algorithms and folds, it is noticeable that a cluster of 
medications that had half-circle patterns like those described above. This region is 
highlighted in the red box of Fig.  31.4  INFUSE. By mouse-hovering these features 
to read their names, it shows that those ranked high by the upper-half of the circle 
(Information Gain and Fisher Score) were as clinically relevant and similar as those 
ranked by the bottom-half algorithms (Relative Risk and Odds Ratio). This pro-
vided feedback that in predictive modeling it is not safe to assume that one single 
feature selection algorithm is able to detect all possible interesting features and also 

a b c

  Fig. 31.3    ( a ) An illustration of how features are visually represented as circular glyphs. ( b ) 
Multiple models for each feature are represented as  model sections . In this example, the feature is 
divided into four sections, as it was ranked by four feature selection algorithms (Information Gain, 
Fisher-Score, Relative Risk, and Odds Ratio.). ( c ) Each section is further divided into  fold slices  
representing each of the cross-validation folds. Each fold slices features an inward-fi lling bar that 
represents the rank of this feature in that fold. A longer bar implies the feature has a better rank. If 
no bar appears, the feature was unranked in the fold, and thus did not meet the importance 
threshold       

  Fig. 31.4    CAVA supports an iterative search process as described in the use case. This sequence 
shows several snapshots from the scenario where a clinician expands and refi nes an initial high- 
risk cohort using a mix of visual fi lters and patient similarity analytics. The end result is a targeted 
cohort of candidate patients for a new treatment regimen. ( a ) The sequence begins with a cohort 
overview showing age, gender, and diagnosis distributions. ( b ) Interactive visual fi lters are used to 
focus the analysis to narrower cohort. ( c ) Because the fi ltered group is too small, patient similarity 
analytics are requested to expand the cohort by retrieving additional clinically similar patients. The 
newly retrieved patients are visually integrated into the display for further analysis       
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that having a system like INFUSE allows them to build a much richer picture of 
what kind of feature sets may lead to effective modeling. Without such a tool they 
would be restricted at evaluating one single algorithm at a time or, at best, restricting 
the comparison to a small number of features. Without such knowledge, the effi cacy 
of the predictive models could be reduced.   

31.4     Patient Stratifi cation and Cohort Analysis 

 Patient stratifi cation and cohort analysis are important techniques used in healthcare 
to study risk factors within population groups. The cohort study is a foundational 
tool that helps experts uncover correlations between specifi c risk metrics and the 
underlying attributes of individuals within the study population. Cohort studies are 
often performed prospectively using techniques that are statistically mature and 
powerful. However, the analytical process is often slow and expensive when collect-
ing data prospectively. Retrospective analyses, which use previously collected data, 
are a possible alternative. Unfortunately, the use of retrospective studies has been 
relatively limited due to the historical diffi culty in collecting and analyzing very 
large datasets. However, as more and more data become electronic, very large 
repositories suitable for retrospective cohort analysis are becoming increasingly 
common. These data warehouses can contain comprehensive historical observations 
of millions of people over time spans of many years. The increasing availability of 
such data helps overcome the fundamental limitations of the retrospective approach. 
In theory, domain experts can use these data to perform interactive, exploratory 
cohort studies without the overheads associated with prospective techniques. In 
practice, however, interactive cohort studies exploring large-scale retrospective data 
collections produce their own set of challenges. Data management, analysis, and 
summarization all become more diffi cult and typically lead to the use of more 
advanced technologies. Instead of relying on a spreadsheet and some basic statis-
tics, users must also use technologies such as machine learning, data mining, and 
visualization tools to help make sense of the large scale of data they wish to 
examine. 

31.4.1     Actionable Risk Stratifi cation 

 A key step in providing personalized care is to segment the patient cohort into more 
homogeneous groups in terms of risk factors, so that a customized treatment plan 
can be constructed for each group. We term this process  Actionable Risk Stratifi cation  
because it goes beyond the traditional approaches of stratifying patients based on a 
single risk score. While that approach can effectively identify the group of high-risk 
patients to focus resources on, it does not provided insights into what are the most 
important risk factors to manage for these patients. Specifi cally, patients with the 
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same (high) risk score may have incurred that high risk for different reasons 
(e.g., different comorbidities) and thus need to be managed differently. 

 A major challenge for actionable risk stratifi cation is the heterogeneity of 
patients’ clinical conditions. For example, CHF patients may have different comor-
bidities, such as diabetes, kidney diseases, or lung diseases. In different comorbidity 
groups, the medical features that contribute to the risk, or risk factors, are different. 
One way to perform patient stratifi cation while taking into consideration of the most 
important factors is to construct a patient similarity network using techniques dis-
cussed earlier in this chapter, and then perform graph based clustering over this 
similarity network. However such an approach has the limitation that there is often 
inherent ambiguity in part of the network, due to the complexity of patients’ condi-
tions. As a result a purely data-driven approach would often lead to results that are 
unstable (i.e., different segmentation could emerge with slight perturbation of the 
attributes) and diffi cult to interpret. 

 One way to address the inherent ambiguity in data is to bring in prior knowledge 
from domain experts and literature. Such knowledge can be used to guide the data 
driven segmentation process such that the results conform with crucial clinical 
insights that have already been validated through extensive clinical studies, and are 
thus more interpretable and actionable. To this end we have developed an approach 
called RISGAL (RISk Group anALysis), which is a novel semi-supervised learning 
framework for data- and knowledge-driven patient risk group exploration [ 29 ]. The 
input of RISGAL is a graph with nodes as patients and edges as patient similarities, 
as well as a set of knowledge-driven risk factors or groups provided by domain 
experts or extracted from literature. The output is a set of patient risk groups that 
align with those provided risk factors. The approach was applied to a real-world 
electronic medical record database to stratify a set of patients with respect to their 
risk of CHF onset and was show to be able to identify both data- and knowledge- 
driven risk groups with rich clinical insights.  

31.4.2     Healthcare Utilization Analysis and Hot Spotting 

 Another area where patient stratifi cation has important applications is in healthcare 
utilization analysis. Utilization analysis based on observational healthcare data col-
lected through normal course of care delivery and carried out in a systematic man-
ner can be leveraged to improve care delivery in many ways. For example, through 
“hot spotting”, we wish to identify patients, in a timely manner, who are heavy users 
of the system and their patterns of use, so that targeted intense intervention and fol-
low up programs can be put in place to address their needs and change the existing, 
potentially ineffective, utilization pattern [ 4 ]. In anomaly detection, the goal is to 
identify utilization patterns that are unusual given patients’ clinical characteristics, 
including both underutilization and overutilization. The former may indicate a gap 
in medical service that if left unaddressed could result in further deterioration of 
patient’s condition leading to situations requiring more costly and less effective 
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interventions. The latter incurs unnecessary cost and waste of precious healthcare 
resources that could have been directed towards cases in real need. 

 We have developed a novel framework for utilization analysis designed to 
address these needs. The fi rst component of the framework is Utilization Profi ling 
and Hot Spotting. Here we use a vector space model to represent patient utilization 
profi les, and apply advanced clustering techniques to identify dominant utilization 
groups within a given population. The second component of the framework is 
Contextual Anomaly Detection for Utilization. Here we developed a novel method 
for  contextual anomaly detection  designed to detect utilization anomalies while 
taken into consideration the patients’ clinical characteristics. In this method we fi rst 
build models trained from observational data to compute the expected utilization 
levels for each patient given his/her clinical and demographic characteristics. We 
then examine the difference between the expected and actual levels based on well- 
established statistical testing methods to identify anomalies. This utilization analy-
sis framework was tested and evaluated using outpatient data for a population of 
7,667 diabetes patients collected over a 1 year period, and was shown to be effective 
in identifying clinically meaningful instances for both hot spotting and anomaly 
detection [ 8 ].  

31.4.3     Interactive, Visual Cohort Analysis 

 CAVA—a platform for Cohort Analysis via Visual Analytics—was designed to help 
clinical researchers work faster and more independently when performing retrospec-
tive cohort studies Zhang et al. [ 35 ]. Motivated by the needs of real-world analysts 
working in the healthcare domain, CAVA follows a novel system design centered 
around three primary types of artifacts: (1) cohorts, (2) views, and (3) analytics. 
Cohorts are CAVA’s fundamental data construct and represent a set of people and 
their associated properties. Views are visualization components that graphically dis-
play a cohort and allow users to directly manipulate or refi ne the underlying cohort. 
Analytics are computational elements that create, expand, and/or alter the contents 
of a cohort. In this way, CAVA treats both Views and Analytics as functional compo-
nents that operate on an input cohort and produce an output cohort. Building on this 
design principle, CAVA allows users to chain together complex sequences of steps 
that intermix both manual and machine-driven cohort manipulations.  

31.4.4     Use Case: Iterative Cohort Analysis 

 The CAVA platform enables a wide range of cohort analysis workfl ows. As an 
example, suppose a clinician who has recently become aware of a new preventive 
technique that has been shown to help delay or prevent certain types of patients 
from developing heart disease. In particular, the treatment has been studied most in 

J. Hu et al.

adam.perer@us.ibm.com



545

male hypertensive patients between 60 and 80 years of age. Due to limited resources 
and potential side effects, the clinician wants to focus this new treatment regimen on 
only those patients who are both (a) at high risk of developing the disease and (b) 
best fi t the selection criteria for which the treatment is most effective. The clinician 
uses CAVA to fi nd a cohort of candidates for the treatment following a usage pattern 
that we call iterative search. 

 To start, the physician selects a high-risk group from the cohort panel that has 
been generated by a risk stratifi cation analytic. The user then drags and drops the 
cohort onto the demographic overview visualization icon. This results in the visual-
ization shown in Fig.  31.4a , which displays linked views of age, gender, and diag-
nosis distributions. The user interactively selects various elements in the 
visualizations to explore how these three demographic criteria are correlated. 

 Next, the clinician interacts with the visualization to select and fi lter the age 
group in which the treatment has been studied: 60–80 years of age. By selecting the 
age range in the histogram and clicking the fi lter button, the user modifi es the cohort 
to exclude those outside the specifi ed range. The clinician then selects the men in 
the cohort and applies an additional fi lter. The result is shown in Fig.  31.4b . As a 
result of the fi lters, the initial cohort has been reduced to a group roughly one-third 
in size. However, the clinician presumes that there are likely additional patients—
missing from the current cohort—who are clinically similar to the visualized 
patients and could benefi t from the treatment even if they do not strictly meet the 
inclusion criteria. Therefore, the clinician decides to search for similar patients by 
dragging the current cohort from the active view to the Patient Similarity entry in 
the analytic panel. In response, CAVA binds the visualized cohort to the analytic and 
presents the user with a dialog box to gather the needed input parameters. In particu-
lar, the clinician indicates that she wants to retrieve enough similar patients to dou-
ble the size of the cohort. After clicking OK, CAVA runs the analytic and updates 
the visualization with the newly expanded cohort. 

 The visualization now shows the additional similar patients, but the clinician is 
still not fi nished. Because the treatment was designed for patients with hyperten-
sion, she selects the hypertension subgroup in the visualization (as shown in 
Fig.  31.4c ) and applies one last fi lter. The clinician has now used a combination of 
ad hoc fi lters and analytics to identify an initial set of candidate patients to target 
with the newly available treatment. Moreover, they have accomplished this without 
the help of a technology team to write SQL queries, run analytics, or produce 
reports.   

31.5     Care Pathway Analytics 

 Extracting insights from temporal event sequences, such as mining frequent pat-
terns, is an important challenge in healthcare. However, despite the availability of 
temporal data and the common desire to extract knowledge, mining patterns from 
temporal event sequences is still a fundamental challenge in data mining [ 14 ]. 

31 Data Driven Analytics for Personalized Healthcare

adam.perer@us.ibm.com



546

Frequent Sequence Mining (FSM) techniques have emerged in the data mining 
community to fi nd sets of frequently occurring subsequences. However, these algo-
rithms often have constraints that limit its applicability to real-world data. 

 First, they may not take into account the multiple levels of detail present in 
healthcare data. For example, ICD-9 diagnostic codes (which encode symptoms, 
causes, and signs of diseases using ICD-9 standards) are organized according to a 
meaningful hierarchy. In EMRs, temporal events are often recorded at a specifi c 
level-of-detail to record maximum information about an event’s type. FSM tech-
niques applied to data with a large dictionary of event types will often suffer from 
computational complexity. Perhaps even more of a fundamental problem is that 
patterns extracted from a specifi c level- of-detail may impair an interpretable over-
view of patterns for users. 

 A second issue is that FSM techniques ignore the temporal context associated 
with data, and instead focus on the pure sequentially of events. However, for medi-
cal scenarios, if a certain amount of time elapsed between events, the events should 
not be considered as part of the same sequence, even if events are technically 
sequential in the event log. 

 A third issue is concurrency. Many FSM algorithms suffer from pattern explo-
sion when there are many concurrent events. This is particularly troubling for medi-
cal data, as many systems may record data in low-resolution precision, such as a 
day, and many events may occur on the same day. 

 A fourth issue is outcome. Many FSM algorithms are agnostic to the types of 
patterns mined. However, in healthcare data, analysts may not just need a list of pat-
terns but instead how each of the patterns correlate to an outcome measure. 

 A recent system, Frequence [ 19 ], address these issues by featuring a novel fre-
quent sequence mining algorithm to handle multiple levels-of-detail, temporal con-
text, concurrency, and outcome analysis. Frequence also features a visual interface 
designed to support insights, and support exploration of patterns of the level-of- 
detail relevant to users. 

31.5.1     Visual Representation of Frequent Patterns 

 In order to make the description of the system understandable, the characteristics of 
our visualization are illustrated in Fig.  31.5 . In this example, the patterns are 
sequences of clinical events, and each patient has an outcome measure.

   Events in the frequent sequences are represented as nodes, and event nodes that 
belong to the same sequence are connected by edges. The nodes and edges are posi-
tioned using a modifi ed Sankey diagram layout [ 9 ]. 

 Thus, in Frequence, subsequences are represented as individual edges. For 
instance, the simple pattern  Diagnosis  →  Medication , is visualized as a  Diagnosis  
node connected to a  Medication  node, as shown at the bottom of Fig.  31.5 . Patterns 
that share similar subsequences, such as  Lab  →  Diagnosis  →  Medication  and  Lab  
→  Diagnosis  →  Lab , involve two edges from  Lab  to  Diagnosis  representing each 
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subsequence. Thus, prominent subsequences also become visually prominent due to 
the thickness of the combined multiple edges. 

 Of course, not all event subsequences are equal as some correlate to a positive 
outcome, whereas others correlate to a negative outcome, as determined by 
Frequence’s outcome analytics. The visualization uses color to encode each pat-
tern’s association with an associated outcome. For this scenario, the patterns that 
occur more often with healthy patients are more blue. The patterns that occur more 
often with unhealthy patients are more red. The neutral patterns that appear com-
mon to both healthy and unhealthy patients are gray.  

31.5.2     Use Case: Lung Disease and Sepsis 

 As an illustrative example, we briefl y present a use case involving a team of clinical 
researchers interested in determining if there are particular patterns that lead to 
patients with lung disease developing sepsis, a potentially deadly medical condi-
tion. Additional details about this use case are presented in [ 19 ]. 

 The institution used a set of 2,336 patients diagnosed with lung disease, each 
with longitudinal events of ICD-9 diagnostic codes. Of the patients with lung dis-
ease, 483 developed sepsis within 6 months of their diagnosis of lung disease, 
whereas 1,853 managed to not contract the condition. 

 At the top of Fig.  31.6 , the coarsest patterns for all of the lung disease patients 
are shown. The clinician was particularly interested in cardiovascular complica-
tions, and noticed that the pattern  CardiacDisorders  →  SymptomDisorders  was 
common yet neutral (that is, this pattern was common to patients who did and did 
not end up contracting sepsis). After selecting this pattern in Frequence and fi ltering 
by cohort to see the matching patients, the fi ner level of detail (Level 1) allowed the 
clinician to see more detailed cardiac conditions, such as cardiac dysrhythmia and 
heart failure. Other complications, such as acute renal failure (which medical litera-
ture suggests is linked to developing sepsis), also appear. However, the clinician is 
interested in the patterns that led to patients not developing sepsis, and fi ltered to the 
positive patterns in the middle of Fig.  31.6 . Surprised to see the pattern  HeartFailure  

  Fig. 31.5    An example of Frequence’s visual encoding for a set of frequent patterns. Patterns are 
represented by a sequence of nodes (events) connected by edges (event subsequences). Patterns are 
colored according to their correlation with users’ outcomes       
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  Fig. 31.6    The  top fi gure  shows an overview of the coarsest patterns in Frequence using the Lung 
Disease and Sepsis dataset. The  middle fi gure  shows the positive patterns at a fi ner level-of-detail 
for the cohort who matched the CardiacDisorders → SymptomDisorders sequence. The  bottom 
fi gure  shows the patterns at the fi nest level of detail, after selecting HeartFailure → LungDiseases       
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→  LungDiseases , the clinician fi ltered to the cohort that matched this pattern and 
pivoted to Level 2, as shown in the bottom of Fig.  31.6 . The clinician immediately 
noticed that patterns that featured both Atrial Fibrillation and Acute Respiratory 
Failure are red, which is sensible, as medical literature suggests both are risk factors 
for sepsis. However, the clinician found it interesting that patterns beginning with 
Acute Respiratory Failure alone were not predictive of sepsis, but rather what hap-
pened next in the sequence was more predictive. From the Acute Respiratory Failure 
node in the fi rst column of the visualization, the patterns diverge into red and blue, 
making it clear that what happens immediately after such Acute Respiratory Failure 
will likely determine if the patient will get sepsis or not.

31.6         Disease Modeling 

 Chronic diseases usually follow a long and slow progression. For example, Chronic 
Obstructive Pulmonary Disease (COPD) may take around 10 years to evolve from 
stage I (mild) to stage IV (very severe) [ 5 ]. It may also take 10 years for Congestive 
Heart Failure (CHF) progressing from stage I (mild) to stage IV (severe). Detection 
of such chronic diseases at its early stage is of key importance for effective treat-
ment or intervention. 

 Disease Progression Modeling (DPM), which aims at modeling the entire progres-
sion procedure of a disease with computational technologies, is one important tech-
nique that can help realize disease early detection. Key challenges in developing DPM 
methodologies include: (1) Multiple Covariates. The progression of disease usually 
involves the evolution of many different types of covariates. In general it is not know 
which one or which group of variables are important. (2) Progression Heterogeneity. 
The patient disease conditions can progress differently for different individuals, and 
the patient records are not necessarily aligned. (3) Incomplete Records. The patient 
records are not complete, meaning that in most of the cases we are not able to get the 
patient records from the beginning stage of the disease to its end stage. (4) Irregular 
Visits. The patient only has medical records when he/she pays visit to medical facili-
ties. Most of the times patients visits are at irregular time stamps due to various rea-
sons. (5) Discrete Observation. Although the disease progression is a continuous time 
procedure, the patient records are only observed on certain discrete time stamps or 
intervals. (6) Limited Supervision. For most of the diseases we only have very limited 
knowledge on which observed events should belong to which disease stage. 

 As an initial step towards addressing these challenges, we developed an machine 
learning approach to infer probabilistic disease progression models from the longi-
tudinal clinical fi ndings of a cohort of patients who have developed, or are at risk 
developing such disease [ 26 ]. First of all, we use a Markov Jump Process to model 
the transition of disease stages/states, which implies (1) the progression is 
continuous- time; (2) the transition probability to the future state only relies the cur-
rent state and the time span. 

 Second, we use the onset pattern of comorbidities to drive the transitions of the 
Markov Jump Process. Generally speaking, a comorbidity is a disease or syndrome 
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that co-occurs with the target disease. For example, hypertension is a common comor-
bidity of diabetes and osteoporosis is a common comorbidity of COPD. Since the 
onset of a new comorbidity often signifi es the exacerbation of the target disease, we 
use the onset pattern of multiple comorbidities to collectively capture the state transi-
tions of the target disease. Finally, in order to infer the presence of the comorbidities 
from the observed clinical fi ndings, we use a bipartite noisy- or Bayesian network [ 7 , 
 20 ]. Simply speaking, given a set of comorbidities and a set of clinical fi ndings, we 
assume an observed clinical fi nding was “activated” by the presence of any of the 
comorbidities with a certain activation probability. Such structure is especially well 
suited to our setting due to its fl exibility in modeling sparse and noisy observations. 

 We validated our model on a data warehouse from a real-world longitudinal 
EMR database of 3,705 confi rmed COPD patients over the course of 4 years. For 
each patient encounter ICD- 9 codes were recorded to indicate what medical condi-
tions that patient had at that time point. Other information, such as drug prescrip-
tion, lab test results, was also recorded. The results demonstrated that the proposed 
method can detect the episodes corresponding to different disease stage of every 
patient [ 26 ]. 

31.6.1     Visualizing Disease Progression 

 In order to better understand the progression of diseases, researchers can use tools 
like MatrixFlow. MatrixFlow is designed to help aid medical decision makers and 
researchers by making the subtle trends of disease progression more obvious. The 
goal is that by unearthing the hidden patterns in patient health records, emerging 
health risks may become more discoverable and earlier diagnoses of diseases can 
occur so clinicians and patients can proactively develop preventative strategies to 
reduce negative future outcomes. 

 The analytics work by extracting clinical event sequences from patient EMR data 
and then constructing a temporal network of co-occurring events to model the rela-
tionships between events as a disease progresses over time. The patterns in the evo-
lution of the disease are then revealed in our interactive visualization as a temporal 
fl ow of matrices, MatrixFlow. MatrixFlow provides several interactive features for 
analysis: (1) one can sort the events based on the similarity in order to accentuate 
underlying cluster patterns among those events; (2) one can compare co-occurrence 
events over time and across cohorts through additional line graph visualization.  

31.6.2     Clinical Event Networks 

 This work aims at discovering meaningful patterns from clinical event sequences of 
patients. Clinical event sequences are simply a series of time-stamped events from 
a patient’s medical record, such as disease diagnoses, patient symptoms, lab results, 
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and medication orders. However, what if researchers are interested in determining 
the co-occurrence of event—that is, when events simultaneously occur. 
Co-occurrence can be modeled by creating a network of clinical events, where 
events are nodes, and co-occurring events are connected by an edge. 

 Instead of using a traditional node-link diagram, MatrixFlow [ 18 ] relies on its 
namesake visualization: the adjacency matrix. In matrix visualizations, the columns 
and rows represent the nodes of the network, whereas each cell in a matrix repre-
sents the edge between the two nodes.  

31.6.3     Use Case: Heart Failure 

 One motivating example is the clinical complexity and heterogeneity of heart failure 
(HF). HF has posed challenges to developing standardized criteria for its diagnosis. 
The Framingham HF criteria, originally published in 1971, were based on clinical 
data acquired in the 1950s and 1960s. In that study, two or more major criteria or 
one major and two or more minor criteria are used as the diagnosis criteria for 
HF. The challenges for making the correct HF diagnosis earlier are (1) how to cor-
relate the sparse signals of a single patient across time and encounters, and (2) how 
to leverage historical data of other similar patients to identify the emerging pattern 
earlier. 

 We illustrate the capabilities of MatrixFlow with a dataset of over 50,625 
patients. A total of 4,644 incident HF cases were identifi ed between 2003 and 
2010. Up to ten control patients were selected for each case. Controls were 
clinic-matched, sex- matched, and age-matched to the corresponding case but did 
not meet operational criteria for HF on or before the corresponding case’s diag-
nosis date. Note that two different cases can share common controls, in this 
design. For this study, we extracted the clinical notes portion of the EMRs for 
4,644 case patients and for 45,981 control patients. Additionally, we have 1,200 
confi rmed HRrEF (reduced ejection fraction) and 1,615 confi rmed HFpEF (pre-
served ejection fraction) cases, and the rest are HF cases without a confi rmed 
subtype. 

 Figure  31.7a  shows the evolution of co-occurrence matrices of positive 
Framingham symptoms in the HFrEF patients, where patients are aligned by their 
diagnosis date. Each matrix displays co-occurrence events in a 3-month window. 
The rightmost matrix corresponds to the window right before diagnosis and the 
leftmost one the window 15–18 months before the diagnosis. From left to right as 
time evolves, it is possible to observe the percentage of patients having co-occurring 
Framingham symptoms is increasing, which confi rms with the degrading clinical 
status of those patients. Notably, as patients gets closer to HF diagnosis, multiple 
Framingham symptoms starts to appear more frequently. A similar temporal pattern 
is observed in HFpEF patients Fig.  31.7b , which seems to suggest that despite the 
pathophysiological differences, both HF types seem to develop the same co- 
occurrence patterns on Framingham symptoms. On the other hand, control groups 
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Fig.  31.7c  have much less obvious patterns, except a slight increase of prevalence 
on common symptoms like DOExertion and AnkleEdema, presumably due to the 
normal aging process.

31.7         Conclusions 

 Healthcare has undergone a tremendous growth in the use of EMR systems to cap-
ture patient disease and treatment histories. This and other rich observational data 
being captured in the healthcare system provide the foundational source material for 
realizing the vision of Learning Health Systems. However, to truly realize this 
vision, advanced data driven analytics and visualization methodologies and systems 
need to be developed in order to convert the source material into meaningful 
insights. In this chapter we described some initial progresses we have made in 
applying advanced analytics to derive insights to support smarter, more personal-
ized care, and the journey continues. We are continuing to develop cutting edge 
innovations that will take us to the next level. One direction we are exploring is the 
integration of health and social programs. Specifi cally, we are working on develop-
ing comprehensive risk assessment models to better predictive risk in a cross domain 
environment, linking together physical health with mental health, behavioral fac-
tors, and overall quality of life, in order to drive successful integrated care. Another 
direction we are focusing on is the better understanding of the drivers of risk through 
disease modeling. Here we have efforts underway to better model phenotype repre-
sentation from complex data, and to develop machine learning approaches to derive 
disease progression models. Finally, we are working on developing a  Visual 
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  Fig. 31.7    The temporal evolution of the Framingham symptoms in MatrixFlow. ( a ) The  top row  
of matrices represents the patterns the HFrEF patient cohort. ( b ) The  middle row  represents the 
HFpEF patient cohort. ( c ) The  bottom row  represents the Controls cohort       
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Analytics Workbench , where advanced analytics can be tightly integrated with inter-
active visualizations tools to support dynamic, comprehensive and effi cient data- 
driven hypothesis generating and testing. Our vision here is to provide a powerful 
tool that can be leveraged by researchers everywhere to speed up the development 
of data-driven analytics that can lead to better deliver of care at lower cost.     
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