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ABSTRACT
Extracting insights from temporal event sequences is an im-
portant challenge. In particular, mining frequent patterns
from event sequences is a desired capability for many do-
mains. However, most techniques for mining frequent pat-
terns are ineffective for real-world data that may be low-
resolution, concurrent, or feature many types of events, or
the algorithms may produce results too complex to interpret.
To address these challenges, we propose Frequence, an intel-
ligent user interface that integrates data mining and visual-
ization in an interactive hierarchical information exploration
system for finding frequent patterns from longitudinal event
sequences. Frequence features a novel frequent sequence
mining algorithm to handle multiple levels-of-detail, tempo-
ral context, concurrency, and outcome analysis. Frequence
also features a visual interface designed to support insights,
and support exploration of patterns of the level-of-detail rele-
vant to users. Frequence’s effectiveness is demonstrated with
two use cases: medical research mining event sequences from
clinical records to understand the progression of a disease,
and social network research using frequent sequences from
Foursquare to understand the mobility of people in an urban
environment.
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INTRODUCTION
One of the challenges of the Big Data era is to leverage the
voluminous data that is being captured to drive decision mak-
ing and insights. Common to such data are temporal events,
data points with both a timestamp and event type, so under-
standing patterns of temporal event sequences is an important
problem to many. For example, medical researchers wish to
leverage the data captured by electronic health records to de-
termine if certain sequences of medical events correlate with
positive outcomes. Similarly, city government officials wish
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to leverage the temporal data collected from their transporta-
tion systems, call centers, and law enforcement agencies to
improve their cities’ services.

However, despite the availability of temporal data and the
common desire to extract knowledge, mining patterns from
temporal event sequences is still a fundamental challenge in
data mining [7]. Frequent Sequence Mining (FSM) tech-
niques have emerged in the data mining community to find
sets of frequently occurring subsequences. However, these
algorithms often have constraints that limit its applicability to
real-world data:

• Level of Detail. Temporal events are often recorded at
a specific level-of-detail to record maximum information
about an event’s type. FSM techniques applied to data with
a large dictionary of event types will often suffer from com-
putational complexity. Perhaps even more of a fundamen-
tal problem is that patterns extracted from a specific level-
of-detail may impair an interpretable overview of patterns
for users. In order for mining techniques to be technically
feasible and usable, we propose multiple levels-of-detail
should be available to users.

• Temporal Context. Many FSM techniques ignore the
temporal context associated with data, and instead focus on
the pure sequentiality of events. However, for certain real-
world scenarios, if a certain amount of time elasped be-
tween events, the events should not be considered as part of
the same sequence, even if events are technically sequen-
tial in the event log. We propose mining techniques need
to take into consideration the temporal context of users.

• Concurrency. Many FSM algorithms suffer from pattern
explosion when there are many concurrent events. This is
particularly troubling for real-world data, as many systems
may record data in low-resolution precision, such as a day,
and many events may occur on the same day. For other
datasets, even when there is extreme temporal precision to
data (e.g. millisecond precision), the exact order of events
may be irrelevant, so if they occur within a domain-relevant
time window, they should be treated as concurrent. We
propose mining techniques need to handle concurrency.

• Outcome. Many FSM algorithms are agnostic to the types
of patterns mined. However, in real-world data, analysts
may not just need a list of patterns but instead how each of
the patterns correlate to an outcome measure. We propose
mining techniques need to support outcome analysis.

In this paper, we enhance a fast and popular FSM algorithm
to handle these real-world needs to serve actionable insights.



But to support each need properly, the parameters should be
flexible to derive from user hypotheses or evolve during an
iterative data exploration process. In order to support flexi-
ble decision making, we present Frequence, a intelligent user
interface designed to reach actionable insights by integrating
visualization with interactive mining algorithms.

We demonstrate Frequence’s utility in two real-world use
cases: a medical informatics researcher using frequent se-
quences in electronic medical records to understand the pro-
gression of a disease among patients, and a social network
researcher using frequent sequences from a location-based
social network to understand the relationship between on-
line popularity and offline mobility throughout urban envi-
ronments.

Concretely, Frequence’s contributions include both a novel
algorithm for Frequent Sequence Mining whose design han-
dles real-world constraints of level-of-detail, temporal con-
text, concurrency, and outcome, and a novel intelligent user
interface that integrates mining and visualization to support
interactive parameterization and exploration to reach insights.

This paper begins with related work, providing an overview
of sequence mining and visualization techniques. Next, an
overview of the design of Frequence is described, as well
as the iterative workflow it supports. Then, Frequence’s se-
quence mining algorithms are described as well as its novel
enhancements. Next, Frequence’s visual interface is de-
scribed in terms of its visual encoding and interactive UI to
parameterize the analytics. Then, use cases are described to
demonstrate Frequence’s utility on real-world data. Finally,
this paper concludes with a discussion of future work.

RELATED WORK
There has been little work that integrates techniques for min-
ing and visualizing frequent event sequences, so we present
prior work on mining and visualization separately.

Mining Frequent Event Sequences
Frequent Sequence Mining (FSM) is a popular technique
for finding sets of frequently occurring subsequences from
a larger set of temporal event sequences. It is challenging
since one may need to examine a combinatorially explosive
number of possible frequent subsequences.

FSM has been researched for a long time and many ap-
proaches have been proposed. Initially, most of the ap-
proaches (e.g., Generalized Sequential Pattern miner (GSP)
[1]) are A priori-like [1], which utilizes the fact that any
super-pattern of a non-frequent pattern cannot be frequent.
These approaches start by constructing a frequent pattern
set (the appearance frequencies of the patterns included are
above a certain percentage threshold) containing only one
event, then they grow those patterns pass by pass, with each
pass appending one single event to the detected patterns from
last pass, until no frequent patterns can be found. This type of
approach can be computationally expensive due to the huge
candidate sequence set and multiple database scans. Many
strategies have been proposed to make FSM more efficient

and practical. For example, PrefixSpan (Prefix-projected Se-
quential PAtterN mining) [8] explores prefix projection in
FSM to reduce the efforts of candidate subsequence gener-
ation. SPADE (Sequential PAttern Discovery using Equiv-
alence classes) [17] utilizes combinatorial properties to de-
compose the original problem into smaller sub-problems, that
can be independently solved in main-memory using efficient
lattice search techniques, which greatly reduces the number
of database scans. SPAM (Sequential Pattern Mining) [3] de-
signs a smart bitmap based representation for those event se-
quences, so that all event sequences become 0-1 strings, and
all operations needed for FSM will become bitwise AND/OR
operations. This makes the FSM procedure much more ef-
ficient. However, despite these improvements, there are still
some difficulties for applying such algorithms directly to real
world data, especially when there are concurrent events or
temporal constraints. Frequence’s FSM algorithm enhances
SPAM to support these user needs.

Temporal Event Sequence Visualizations
There has been a great body of work in the visualization com-
munity designing techniques for temporal event sequences.
A common approach is to place records on a series of hor-
izontal timelines to show multiple records in parallel [2, 9]
and support interactive search [6, 13, 16], filtering [13], and
clustering [4]. Recently, LifeFlow [15] introduced a way to
aggregate multiple event sequences into a tree, and Outflow
[14] later designed a way to aggregate events into a graph, as
well as integrating statistics.

The visual design of Frequence’s visualization is similar to
Sankey [10] and alluvial [11] diagrams. However, these di-
agrams focus on the flow of resources, as Sankey diagrams
ignore sequential ordering whereas alluvial diagrams were
designed to show how network structures change over time.
Outflow also looks visually similar to our approach, how-
ever, Outflow aggregates subsequences and outcomes [14].
In Frequence, each subsequence is represented as an individ-
ual edge to provide an overview of all sequences and their
individual outcomes and support, as we support user tasks
to find meaningful individual sequences. Furthermore, only
Frequence supports navigation by level-of-detail which is a
novel contribution to prior approaches.

SYSTEM DESIGN AND WORKFLOW
Frequence’s intelligent user interface is designed to put users
at the center of both analytics and visualization. In line
with many advanced visual interfaces, Frequence supports the
common browsing and searching strategy of the Visual Infor-
mation Seeking Mantra, which suggests to support Overview
first, Zoom and Filter, then Details-on-Demand [12]. When
users begin their exploration, as illustrated in Figure 6, they
are first shown frequent patterns at a coarse level-of-detail to
give them an overview. If they discover an pattern of interest,
they can select the pattern and then zoom and filter to see the
underlying patterns at a finer level-of-detail. Whenever users
want more information about a particular pattern, at any level-
of-detail, they can select it to get details-on-demand, which
include statistics about the pattern’s frequency, outcome, and
the events composed within.



However, parallel to browsing and searching, Frequence also
supports interaction with the analytics to support a refinement
strategy, where users can adapt the mining algorithm based
upon their data-driven hypotheses to generate more meaning-
ful patterns to explore. By interactively refining parameters
of the mining algorithm, such as temporal context, outcome
measures, and other temporal constraints, users can be em-
powered to make sure they are reaching meaningful results.

In the next section, we explain the novel frequent pattern min-
ing algorithms necessary to support this iterative workflow.

MINING FREQUENT PATTERNS
Frequence’s frequent pattern mining algorithm is based on the
SPAM algorithm [3], with several enhancements. In order to
understand the enhancements, we first provide an overview
of the SPAM algorithm.

The goal of Frequent Sequence Mining (FSM) is to mine fre-
quent subsequences from a set of event sequences. Formally,
event sequences and subsequences are defined as follows:
Definition 1. An event sequence θ = 〈θ1, θ2, · · · , θm〉(θi ∈
D) is an ordered list of events, whereD is the event dictionary
and θi happened no later than θi+1.
Definition 2. A sequence τ = 〈τ1, τ2, · · · , τmτ 〉 is said to be
a subsequence of another sequence θ = 〈θ1, θ2, · · · , θmθ 〉,
denoted by τ ⊆ θ if ∃ i1, i2, · · · , im such that 1 6 i1 6 i2 6
· · · 6 im 6 mθ and τ1 = θi1 , τ2 = θi2 , · · · , τmτ = θim .

Support is the measure that determines whether a subse-
quence is frequent or not:
Definition 3. Given a set of event sequences S =
{θ1,θ2, · · · ,θn}, the support of a sequence τ is the percent-
age of the sequences in S which have τ as a subsequence.

With the above definition, we say a subsequence (or temporal
pattern) is frequent for sequence set S if its appearance per-
centage in S is above a certain pre-specified support value.

As described in our overview of related work, most FSM al-
gorithms adopt a pattern growing strategy, which is illustrated
in Figure 1. Initially, the algorithms start with an empty fre-
quent pattern set F = {}, then each single event in the event
dictionary D is checked, and the events that are frequent are
added toF . These patterns are referred to as frequent patterns
of length 1, as the length of a pattern is defined as the num-
ber of events it contains. The pattern can be grown with two
types of extensions: an S-extension and an I-extension [3]:
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Figure 1. A graphical illustration of the pattern growing procedure.
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Figure 2. An example of the bitmap representation of the sequences,
where there are four different events and three sequences.

Definition 4. An S-extension of a sequence τ =
〈τ1, τ2, · · · , τmτ 〉 with event θ, denoted by τ → θ, is to ap-
pend θ at the end of τ so that θ happens after τmτ .
Definition 5. An I-extension of a sequence τ =
〈τ1, τ2, · · · , τmτ 〉 with event θ, denoted by τ , θ, is to append
θ at the end of τ so that θ and τmτ happen concurrently.

After a pattern growing stage, all candidate patterns of length
2 are obtained and the frequent ones are added toF . Then the
algorithm grows each pattern of length 2 via an S-extension
and an I-extension to get the frequent patterns of length 3,
and the pattern growing procedure repeats until no more fre-
quent patterns are found. If one considers the complete pat-
tern growing process as a tree (see Figure 1), then the proce-
dure can be seen as a breadth-first search on that tree, which
checks the tree level-by-level. A depth-first search strategy
has also been proposed [3], which checks the tree branch by
branch, and can be a more efficient recursion procedure for
long sequences.

SPAM is able to be computationally efficient by using a
bitmap representation for event sequences [3], which is il-
lustrated in Figure 2. In this representation, a sequence θ is
represented as a |θ|×|D| bitmap B(θ), where |θ| is the length
of θ and |D| is the size ofD, such that B(θ)(i, j) = 1 if the j-
th event in D happened at the i-th timestamp of θ, otherwise
B(θ)(i, j) = 0. With this representation, both S-extensions
and I-extensions can be performed with a bitwise AND op-
eration. Figure 3 shows how to extend event A with event
B for the example in Figure 2. For an S-extension, the first
appearance of A in each sequence is detected, so the corre-
sponding bit value is changed to 0 and all the following bits
to 1 (denoted as T (A)), and then an AND-operation is ex-
ecuted between the bitmap vectors of T (A) and B. For an
I-extension, an AND-operation is directly executed between
the bitmap vectors of A and B. After the extension, the value
of 1 will exist in each sequence if the extended pattern exists
in those sequences. Therefore, the appearance frequency of
the extended pattern is simply the number of sequences that
have a value of 1.

Temporal Context
Although SPAM uses a smart bitmap representation to make
the FSM procedure efficient, it does not take into considera-
tion the temporal context of detected patterns. This is prob-
lematic for real-world applications, as patterns lasting years



1

0

0

0

1

1

0

A

0

1

1

0

0

0

1

T(A)

1

1

1

1

1

1

1

B

0

1

1

0

0

0

1

AàB

à & =

1

0

0

0

1

1

0

A

1

1

1

1

1

1

1

B

1

0

0

0

1

1

0

A,B

à =

S-Extension I-Extension

Figure 3. An example of S-extension and I-extension of event A with
event B for the example sequences in Figure 2.

and other patterns lasting days may have completely different
meanings in different contexts, but SPAM would treat them
equivalently.

In order to make SPAM capable of detecting temporal pat-
terns within a temporal context (that is, within the thresh-
old of a user-defined duration), we propose the following en-
hancement: Suppose that there is an explicit timestamp asso-
ciated with every event in every sequence, then when a can-
didate pattern appears in a specific sequence, the pattern must
not only appear, but also its duration in the sequence should
be below the threshold. Specifically, we define the pattern
duration in a sequence as:
Definition 6. Let τ = 〈τ1, τ2, · · · , τmτ 〉 be a candidate pat-
tern of sequence θ = 〈θ1, θ2, · · · , θmθ 〉, where each event θi
is associated with timestamp ti, and (i1, i2, · · · , im) be a set
of indices of θ satisfying 1 6 i1 6 i2 6 · · · 6 im 6 mθ and
τ1 = θi1 , τ2 = θi2 , · · · , τmτ = θim , then the duration of τ in
θ is min(i1,i2,··· ,im) (tim − ti1).

Algorithm 1 summarizes the our enhanced SPAM approach,
which we call Time-Aware SPAM. Note that in step 3 and step
8 of the Pattern Grow subroutine, when checking the ap-
pearance frequencies of τS/τ I , there is a requirement that
patterns should both appear in the counted sequence and their
duration should be shorter than L.

Concurrency
A bottleneck for Time-Aware SPAM occurs when events hap-
pen at the same time, as this greatly increases the search tree
size in the pattern growing procedure. This is particularly
problematic as concurrent events are often common in real-
world applications. For example, the finest resolution of tem-
poral data in many Electronic Health Records systems is a
day, and during a day, multiple medical events may occur
to a patient (e.g. a patient often gets multiple lab tests dur-
ing a single lab visit). For other datasets, even when there is
extreme temporal precision to data (e.g. millisecond preci-
sion), the analyst may not be concerned about the exact order
of events, as long as they occurred within a domain-relevant
time window.

To alleviate this problem, we pre-process event sequences
prior to Time-Aware SPAM to contain pattern explosion. As
there can be many Concurrent Event Sets (CESs) contained in

Algorithm 1 Time-Aware SPAM
Require: Sequence set S = {θ1,θ2, · · · ,θn}, Support

value α, Pattern duration L
1. Construct bitmap representations for all sequences in S
2. Set the output frequent pattern set F = {}
3. Count all the single event frequencies, and add the ones
whose frequencies above α to F
4. For every event θ ∈ F
5. Do Pattern Grow(θ,F ,F , L)
6. Output F

Pattern Grow(τ ,Sn, In, L)
1. St = {}, It = {}
2. For every θ ∈ Sn
3. if τS=S extension(τ , θ) is frequent w.r.t. L
4. St = St ∪ θ, add τS to output pattern set
5. For every θ ∈ St
6. Pattern Grow(τS ,St,St � θ)
7. For every θ ∈ In
8. if τ I=I extension(τ , θ) is frequent w.r.t. L
9. It = It ∪ θ, , add τ I to output pattern set

10. For every θ ∈ It
11. Pattern Grow(τ I ,St, It � θ)

event sequences, the first step is to detect the frequent Event
Packages (EPs) that are frequent subsets of CESs. If we treat
each CES in every event sequence as a transaction, then the
problem of detecting EPs is equivalent to the problem of fre-
quent item set mining [1], and each detected EP can be used
as a super event. Then, a greedy approach is applied based on
Two-Way Sorting to break down each CES as a combination
of regular and super events, such that the number of events
contained in each CES is greatly reduced.

To better explain the process of breaking down CESs, we
provide the following example: Suppose there exists a CES
ABCDE that needs to be broken down using the detected EPs
(shown in the center of Figure 4). The algorithm then sorts the
packages according to the two-way sorting strategy as shown
in Figure 4 – that is, the EPs are first sorted according to their
cardinalities. Then, for packages with the same cardinality,
they are sorted with respect to their appearance frequency. To
breakdown ABCDE, the algorithm first finds the longest event
packages that are subsets. In this case, ABC and ACE are the
longest packages which are subsets of ABCDE. Then, because
ABC occurs more frequently than ACE, ABC is selected as a
super event contained in ABCDE. Besides ABC, the rest of the
events are DE. Then the procedure is applied again to break
down ABCDE as ABC,D, E. Using this technique, there are
only 3 super events in ABCDE after the break-down proce-
dure. The full details of the algorithm are described in Algo-
rithm 2.

Level of Detail
In real-world data sets, temporal events are often recorded at
a very specific level-of-detail to retain maximum information
about an event. However, applying many FSM techniques
(e.g. [17, 3, 8]) or Time-Aware SPAM to data with a large
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Figure 4. A graphical illustration of how the two-way sorting procedure
works. We first sort the mined event packages according to their car-
dinalities, and then for the packages with the same cardinality, we sort
them according to their frequencies.

Algorithm 2 Breaking Down a CES
Require: An CES S to be broken down into frequent Event

Packages (EPs).
1: Sort the detected EPs into buckets according to their car-

dinalities (number of events contained), such that the
packages within the same bucket have the same cardi-
nality.

2: Sort the packages within the same bucket with their ap-
pearance frequencies in the patient traces.

3: O = ∅
4: for Every bucket B do
5: if length(B) <length(S) then
6: for Every EP E in B do
7: if E is a subset of S then
8: Add E to O, Set S = S\E
9: if S == ∅ then

10: Return O
11: else
12: Return to Step 4
13: end if
14: end if
15: end for
16: end if
17: end for

dictionary of event types will often suffer from computational
complexity. Technical complexity aside, another fundamental
problem is patterns extracted from a fine levels-of-detail may
impair gaining an interpretable overview from the results. In
order for mining to be technically feasible and usable, Fre-
quence is able to mine data on multiple levels-of-detail.

For each level-of-detail available, Frequence runs its mining
algorithm on event sequences using the event dictionary avail-
able for each level-of-detail. Typically, levels-of-detail are
hierarchical and thus the coarse level will likely have a small
event dictionary. In this case, special techniques for handling
concurrency or collapsing event sets may not be required to
remain performant. However, for finer levels-of-detail, large
data sets may require such features to be computationally fea-
sible. That said, in practice, if an overview of coarse patterns
are shown first, a coarse pattern of interest may be selected
to focus on, and then Frequence only needs to mine from the
cohort that matched the coarse pattern, which drastically re-
duces the number of sequences and event types. Frequence’s
iterative workflow was designed to support this type of explo-
ration.

Outcome
Once a set of frequent patterns has been identified, correla-
tions between the mined patterns and the event sequences’
outcome measure can be identified. For example, in a med-
ical informatics scenario, analysts may be curious how cer-
tain patterns correlate with discrete outcome variables (e.g.,
deceased vs. alive) or continuous ones (e.g., blood pressure
measurements).

To enable outcome analysis, a Bag-of-Pattern (BoP) repre-
sentation is constructed for each event sequence. Formally,
given a set of n frequent patterns, the BoP representation is
an n-dimensional vector, where the i-th element of that vec-
tor stores the frequency of the i-th pattern within the corre-
sponding event sequence. If there are m event sequences,
then we construct an m × n sequence-pattern matrix X =
[x1,x2, · · · ,xn] whose (j, i)-th element indicates the num-
ber of times the i-th pattern appeared in the j-th event se-
quence. Thus, the i-th column xj summarizes the frequency
of the i-th pattern in all m sequences. We can also construct
an m-dimensional sequence outcome vector y, such that yj
is the outcome of the j-th event sequence. For example, with
a binary outcome, yi ∈ {+1,−1}, +1 represents a positive
outcome whereas -1 represents a negative outcome. Given
this formulation, statistics are then computed to measure the
correlation between each xi and y to measure the informa-
tiveness of the i-th pattern in terms of predicting a sequence’s
outcome. Frequence has implemented a variety of statistical
measures including Pearson correlation, P-value, information
gain, and odds ratio.

FREQUENCE’S VISUAL USER INTERFACE
Frequence is a web-based interface that features a visualiza-
tion panel in the center of the interface to navigate the visu-
alization, as well as a panel on the left side of the interface to
control the interactive analytics.

Interactive Visualization
Frequence mines sequential knowledge temporal from event
sequences so analysts can gain insights. However, the quan-
tity of patterns discovered is often too large for users to make
sense of them. The goal of Frequence is not only to mine the
patterns but also to present the data in a user-centric way so
that the patterns mined can be utilized in real-world settings.
Information visualization is an effective way of communicat-
ing complex data, and thus the key part of the Frequence UI
is a flow visualization.

We describe the characteristics of our visualization using Fig-
ure 5 as an illustrative example. In this example, the patterns
are sequences of places that users have traveled, and each user
has an outcome measure of popularity. This type of data will
be subsequentially described in more detail as a use-case.

Events in the frequent sequences are represented as nodes,
and event nodes that belong to the same sequence are con-
nected by edges. The nodes and edges are positioned us-
ing a modified Sankey diagram layout [10]. However, while
Sankey layouts aggregate common subsequences into a sin-
gle edge, such an aggregation in Frequence would make
it impossible to reach insights about individual patterns.



Temporal Event Sequence Outcome Support
Arts & Entertainment→Food→Travel & Transport Unpopular 0.25
Arts & Entertainment→Food→Nightlife Spot Popular 0.50
Shop & Service→Food→Nightlife Spot Popular 0.50
Food→Outdoors & Recreation Neutral 0.25

Arts & Entertainment

Shop & Service

Food Outdoors & Recreation

Nightlife Spot

Travel & Transport

Food

Figure 5. An illustrative example of Frequence’s visual encoding for a
set of frequent patterns. Patterns are represented by a sequence of nodes
(events) connected by edges (event subsequences). Patterns are colored
according to their correlation with users’ outcomes.

Thus, in Frequence, subsequences are represented as in-
dividual edges. For instance, the simple pattern Food →
Outdoors&Recreation, is visualized as a Food node con-
nected to a Outdoors&Recreation node, as shown at the bot-
tom of Figure 5. Patterns that share similar subsequences,
such as Arts&Entertainment→ Food→ NightlifeSpot and
Arts&Entertainment→ Food→ Travel&Transport, involve
two edges from Arts&Entertainment to Food representing
each subsequence. Thus, prominent subsequences also be-
come visually prominent due to the thickness of the combined
multiple edges.

Of course, not all event subsequences are equal as some corre-
late to a positive outcome, whereas others correlate to a neg-
ative outcome, as determined by Frequence’s outcome ana-
lytics. The visualization uses color to encode each pattern’s
association with an associated outcome. For this scenario, the
patterns that occur more often with popular users (those who
have a lot of followers on Twitter) are more blue. The patterns
that occur more often with unpopular users (those who have
few followers) are more red. The neutral patterns that appear
common to both popular and unpopular users are gray.

The frequency of each pattern also varies, and the visualiza-
tion uses the thickness of edges to encode how often each
pattern occurs using the pattern’s support, as defined in Defi-
nition 3. For instance, in the example shown in Figure 5, the
pattern Arts&Entertainment→ Food→ Travel&Transport
has a support of 0.25, which is why its thickness is half
the size of Arts&Entertainment→ Food→ NightlifeSpot,
which has a support of 0.5.

Users can interact with the visualization by moving their
mouseover an edge, which will display statistics, such as sup-
port and outcome, about the pattern the edge represents. If
users click a node, all patterns that do not match the selected
node have their opacity diminished so users can focus on pat-
terns that match the user’s specification. Users can specify a
frequent pattern of interest by clicking on multiple nodes un-
til their pattern is fully selected. Once a pattern is selected,
users can use this selection to zoom and filter. Frequence sup-
ports two ways to zoom and filter. The first way is by cohort,
which constrains the dataset to the population that has the se-
lected pattern, and shows the most frequent patterns among

that population. The second way is by pattern, which uses
the whole population, but only mines events that feature the
subtypes of the selected pattern. This latter option is useful
for navigating hierarchical levels-of-detail.

Interactive Analytics
In addition to exploring patterns using the visualization, users
can also adapt and modify the mining algorithm according to
their needs by using the control panel located on the left-side
of the interface.

By default, the Statistics section is selected to show a statis-
tical overview of various aspects of the dataset and patterns.
Users can navigate to the Pattern Definition section to refine
the patterns being mined. Here, users can adjust the support
value for patterns, to focus the analytics on either stronger
or weaker patterns. By selecting the Level of Detail panel,
users can change the level-of-detail of the displayed patterns,
and choose if filtering is by cohort or by pattern. The Out-
come panel allows users to select an outcome variable, as
well as a threshold on that variable to segment the popula-
tion. Here, users can also interactively filter the visualization
using a range slider to focus on positive or negative patterns.
The Temporal Context panel allows users to turn on temporal
constraints, such as concurrency. This panel also features a
slider to specify the time duration for events to be considered
concurrent. The Database panel allows users choose from
where to load their data.

USE CASE: LOCATION SHARING SOCIAL NETWORKS
Some social network researchers are curious about the rela-
tionship between people’s online social media personas and
their offline activities. While mobility data has been difficult
to uncover in the past, this is changing due to the proliferation
of Location Sharing Services (LSS), where people broadcast
the places they visit. One such LSS is Foursquare, a service
that allows users to ”check-in” at different venues to save and
share their locations to friends. According to Foursquare1,
there are over 40 million users and over 4.5 billion check-ins
with Foursquare, as of September 2013. A corpus of a sub-
set of Foursquare data was made publicly available[5], which
contains over 200,000 users and over 22 million check-ins,
and which was imported into Frequence.

In this use case, the researcher was interested in understand-
ing the behavior of users in New York City (NYC), so the
analysis described here is limited to check-ins within the bor-
oughs of Manhattan, Queens, and Brooklyn. This was done
by filtering all check-ins to fall within a bounding box of lat-
itude and longitude coordinates, surrounding the city. After
the geographical filtering, the size of the NYC-constrained
database consisted of 17,739 users with 419,023 check-ins
in 17,182 unique venues over 11 months. Each unique
venue was augmented with Foursquare’s hierarchy of 9 top-
level categories and 289 sub-level categories, retrieved using
Foursquare’s Venue Search API2 to create three levels-of-data
on which to mine.

1http://www.foursquare.com/about
2http://developer.foursquare.com/docs/venues/search
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The goal of the analysis was to understand if certain patterns
of mobility correlate with popularity to procure evidence for
their hypothesis that people who are popular in social media
go to different places in different sequences than people who
were less popular. In order to gain a proxy for social popular-
ity, users’ Foursquare accounts are unified with their Twitter
accounts, and the number of Twitter followers was used as
a metric of popularity. All Foursquare users in the database
had an active Twitter account, and used Twitter to broadcast
their check-ins. The analyst was only interested in users who
were active users of Twitter, so users that had less than 1000
tweets in their lifetime were filtered out3. The median num-
ber of Twitter followers for a user the dataset was 265, so the
analyst used the Outcome panel to consider patterns by users
greater than 265 to be popular, and less than 265 to be un-
popular. The analyst also used the Temporal Context panel
to constrain event sequences within a 6-hour time window so
that only events that occured within that same window were
considered a part of the same event sequence. Each of these
constraints were determined by rapidly testing multiple hy-
potheses, and the constraints evolved from original hypothe-
ses to different sensible parameters based upon data explo-
ration.

With the parameters tuned from interactive exploration, an
overview of patterns at the coarsest level-of-detail is shown
at the top of Figure 6. Interestingly, many of the patterns as-
sociated with popular social media users (the blue patterns)
contain a Shop&Service event. The analyst was also in-
terested in the unpopular patterns, and selected one of the
red patterns for further inspection. After selecting the red
Professional&OtherPlaces → Food pattern, the researcher
used it as a cohort filter to show patterns only from people
who have this pattern. Again, the analyst was interested in
understanding patterns among less popular users, and to focus
on these patterns, the analyst filtered to only the red patterns,
shown in the middle of Figure 6. The analyst determines that
Office→ Hotel correlates with the least popular social me-
dia users, and uses this pattern as a cohort filter to mine only
users who have this pattern. The bottom of Figure 6 shows
the patterns at the finest level of detail, where the names of the
actual venues are now visible to the researcher. No specific
offices are frequent enough to appear in the patterns, due to
the countless companies spread throughout the city, but cer-
tain hotels (e.g. the W Hotel in Times Square) do appear and
correlate to unpopular users, whereas most popular patterns
are those tied with Shopping (e.g. Macy’s, H&M). The re-
searcher remarked the potential applications of these findings
to marketing professionals, who wish to understand who fre-
quents their venues, and their ability to communicate to their
individual social media audiences.

While the researcher acknowledges these insights only apply
to a specific demographic that uses Foursquare and broadcasts
their check-ins on Twitter, this case study demonstrates the
utility of Frequence for exploring temporal patterns of human
mobility and reaching insights.

3On average, there were 2144 tweets per user in the NYC dataset,
before filtering.

USE CASE: MEDICAL INFORMATICS
Due to a large number of medical institutions adopting Elec-
tronic Health Records (EHRs), the opportunities to analyze
and derive insights from medical data has never been greater.
In particular, clinicians and clinical researchers are very inter-
ested in understanding patterns of medical events that often
lead to positive or negative outcomes, so that they can under-
stand or improve their clinical practices.

This use case involves a team of clinicians and clinical re-
searchers interested in determining if there are particular pat-
terns that lead to patients with lung disease developing sepsis,
a potentially deadly medical condition. The institution used a
set of 2,336 patients diagnosed with lung disease, each with
longitudinal events of diagnostic codes (which encode symp-
toms, causes, and signs of diseases using ICD-9 standards 4).
ICD-9 codes are organized according to a meaningful hierar-
chy and this hierarchy was utilized by Frequence as multiple
levels of detail.

Of the patients with lung disease, 483 developed sepsis within
six months of their diagnosis of lung disease, whereas 1,853
managed to not contract the condition. Prior to using Fre-
quence, the clinical researchers had difficulty drawing any
conclusions between these two cohorts, as both types of pa-
tients tend to share many of the same diagnosis codes. How-
ever, the researchers were interested in mining for frequent
patterns to see if the order of these diagnoses has any effect
on their patients.

At the top of Figure 7, the coarsest patterns for all of the lung
disease patients are shown. The clinician was particularly in-
terested in cardiovascular complications, and noticed that the
pattern CardiacDisorders → SymptomDisorders was com-
mon yet neutral (that is, this pattern was common to pa-
tients who did and did not end up contracting sepsis). Af-
ter selecting this pattern and filtering by cohort to see the
matching patients, the finer level of detail (Level 1) allowed
the clinician to see more detailed cardiac conditions, such
as cardiac dysrhythmia and heart failure. Other complica-
tions, such as acute renal failure (which medical literature
suggests is linked to developing sepsis), also appear. How-
ever, the clinician is interested in the patterns that led to pa-
tients not developing sepsis, and filtered to the positive pat-
terns in the middle of Figure 7. Surprised to see the pattern
HeartFailure → LungDiseases, the clinician filtered to the
cohort that matched this pattern and pivoted to Level 2, as
shown in the bottom of Figure 7. The clinician immediately
noticed that patterns that featured both Atrial Fibrillation and
Acute Respiratory Failure are red, which is sensible, as med-
ical literature suggests both are risk factors for sepsis. How-
ever, the clinician found it interesting that patterns beginning
with Acute Respiratory Failure alone were not predictive of
sepsis, but rather what happened next in the sequence was
more predictive. From the Acute Respiratory Failure node in
the first column of the visualization, the patterns diverge into
red and blue, making it clear that what happens immediately
after such Acute Respiratory Failure will likely determine if
the patient will get sepsis or not.

4http://www.who.int/classifications/icd/
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CONCLUSION AND FUTURE WORK
This paper presents Frequence, a novel visual interface de-
signed to mine and visualize frequent event sequences from
temporal events. Frequence includes a novel FSM algorithm
to handle real-world data requirements to serve actionable in-
sights. Frequence also supports iterative and flexible explo-
ration with a visual interface where users can explore results
and refine parameters of the mining algorithm.

We demonstrate Frequence’s utility in two real-world use
cases: a medical researcher using frequent sequences in Elec-
tronic Medical Records to understand the relationship be-
tween the progression of a disease and patient outcomes, and
a social network researcher using frequent sequences from a
Location-based Sharing Service to understand the relation-
ship between online popularity and offline mobility through-
out urban environments.

While these use cases show that Frequence can lead to in-
sights, many topics remain for future work. While Fre-
quence supports interactive parameterization of the mining
algorithm, choosing the right parameters might be a chal-
lenge for some users. A next goal of Frequence is to aug-
ment the user interface with visual feedback to act as a pre-
view of how the parameters will affect mining. An additional
item for future work reflects the scalability of our frequent
sequence mining algorithm. Although our bitmap-based ap-
proach is computationally efficient, as data sets get larger and
larger, new approaches will be necessary for Frequence to re-
main scalable. We plan to investigate applying our algorithm
to a cloud-based distributed architecture, as the hierarchical
aspects of our mining algorithm are well-suited for such an
environment. Finally, a more comprehensive user evaluation
is critical to understanding the relationship between analyt-
ics and visualization in Frequence. We plan to deploy Fre-
quence to domain partners to conduct longitudinal case stud-
ies, where we capture how the capabilities of Frequence affect
their workflow and help them reach insights.
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Figure 6. The exploration process of the Foursquare dataset with Frequence. The top figure shows an overview
of the coarsest patterns. The middle figure shows a filtered view of unpopular patterns at a finer level-of-detail
for the cohort who matched the Professional&OtherPlaces → Food sequence. The bottom figure shows
the patterns at the finest level of detail, where the names of the actual venues become visible, after filtering to the
cohort who have the Office→ Hotel pattern.
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Figure 7. The exploration process of the lung disease patient dataset with Frequence. The top figure shows an
overview of the coarsest patterns. The middle figure shows the positive patterns at a finer level-of-detail for the
cohort who matched the CardiacDisorders→ SymptomDisorders sequence. The bottom figure shows the
patterns at the finest level of detail, after selecting HeartFailure→ LungDiseases.
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