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Abstract 
Partial graph visualizations, sometimes also referred to as online graph visualizations, are visual 
representations of graphs that show only connections around a particular point of interest. They are often a 
useful, less complex alternative to visual representations of graphs as a whole or can serve as visualizations 
when the whole data is not accessible at once. Their biggest downside is that users quickly lose orientation 
because they never get a sense of the structure of the whole graph. In this paper, we introduce techniques that 
improve user exploration of partial graphs by integrating both browsing and querying information finding 
paradigms. From a given partial graph, users can specify queries relevant to user tasks and the results will be 
displayed as visual aids that helps users navigate representations of graphs with a limited look-ahead. Much 
like signposts in the physical world, these graphcues highlight the shortest path to relevant nodes from the 
user’s current location in the graph.  We demonstrate these concepts on a social network of approximately 
500,000 people and 30 million relationships. 

 
Categories and Subject Descriptors: H.5.2 [User Interfaces]: User Interfaces – Information Visualization 

 

1 Introduction 

In a world where a substantial part of the data flood comes 
in the form of abstract graphs (or networks) of ever 
increasing size, many data-centric professions are struggling 
to keep up. For instance, banks that investigate fraudulent 
transactions must now deal with millions of transactions 
between individual accounts and a typical software project 
contains thousands of dependencies between modules. 
Visual representations are essential to gaining insight into 
these interconnected structures. However, for network data, 
typical visualizations like node-link diagrams often lack 
such scalability. Most node-link diagrams become a chaotic 
web of overlapping nodes and tangled edges when 
displaying even just a few hundred nodes. Furthermore, 
many analysts may not be interested in global patterns but 
instead are trying to learn something more about the 
structures around particular data points. Typically, financial 
fraud analysts may not be trying to understand the overall 
patterns of account activity, but have to focus on untangling 
the web of transactions around a particular account that has 
been flagged as suspect. Programmers do not have to 
understand all dependencies in each of their projects, but 
may simply wish to know what the impact is of a proposed 
change on a single module. 

Struggling with the limitations of node-link diagrams and 
demands of analysts, there have been several attempts to 
deviate from the “Overview first, zoom and filter, details on 
demand” visualization strategy as coined by [SHN96] when 
it comes to navigating graphs. Proposed research [ECH97, 
HP09, LPP06] and some commercial products have long 
proposed non-overview browsing strategies. For instance, 
the “Search, Show Context, Expand-on-Demand” strategy 
[HP09] involves users picking a particular data point as 
their focus and then having the system deliver an optimally 

relevant context based upon a custom user-interest function. 
Users can then navigate the visualization by expanding 
context in their desired directions. 

However, the main drawback of such approaches is that 
users do not have a complete overview. Analysts can only 
see a partial view of the graph surrounding a single data 
point at any given time. Furthermore, the layout of the same 
structure might be rendered differently depending on the 
initial data point chosen by the user. This weakens one’s 
ability to become familiar with the global position of data 
points and to find other data points from one’s current 
position. 

This paper makes two novel contributions: Firstly, we 
advocate the tight integration of two different search 
paradigms in a single, coherent partial view network 
visualization. Previous partial view graph visualizations 
have mostly relied on the browsing paradigm, where users 
are expected to guide themselves through the structure, 
based on the currently visible subset of the structure. 
Instead, we propose an integrated navigational model 
consisting of alternating cycles of textual querying followed 
by contextual browsing: Users view a part of the network, 
can then run a textual query over the entire nodeset and can 
subsequently see how the resultset relates to the currently 
visible part. Although overview based graph visualizations 
typically allow textual querying, doing this for partial view 
graph visualizations is much harder, since they, by 
definition, lack an overview of the entire graph. We are as 
yet unaware of any work that attempts to integrate the 
results from textual querying in partial view network 
visualizations. 

Secondly, we designed a visual encoding that takes into 
account both size of the query results and their structural 
relationship to the currently visible graph. In our proposed 
encoding, which we call graphcues, we highlight direction, 
distance and potential relevance in each visual cue. These 
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cues can then be used by the user to decide on a direction 
for exploration beyond the partial view. 

In the next section we briefly discuss research in 
information finding. In Section 3 we describe the concepts 
behind graphcues, detailing their computation and visual 
representation. Section 4 shows how graphcues can be 
applied in practice, using a large social network dataset as 
an example. In Section 5, we give a short overview of other 
related work in the area. Finally, Section 6 discusses 
limitations and suggests further work, and we conclude in 
Section 7. 

2 Information finding in Graphs 

Users typically adopt either a querying or browsing 
paradigm to locate information they are interested in. The 
first, searching, typically involves the user specifying a 
number of keywords that match the information he or she is 
interested in. These keywords are then used by a search 
engine to produce one or more potential matches, which the 
user can subsequently inspect in more detail. When 
browsing, on the other hand, a user inspects an item because 
it is related to the item she is currently viewing. Information 
browsing typically involves navigating from one 
information item to the next, for example by clicking a 
hyperlink. Each paradigm has its own distinct advantages: 
querying is convenient because it is fast, specific and 
predictable, provided good keywords are available. 
Browsing is slow but useful when exact keywords are 
lacking or hard to formulate, or when the context of an 
information item is important. In practice, potential 
solutions to complex searches often consist of multiple sub 
goals, each of which may require a different search strategy 
[MS88]. 

2.1 Querying 

Querying in graphs usually takes the form of direct queries 
on node attributes, or structural queries using a graph query 
language like SPARQL. With both of these types of queries 
we can find (sets of) nodes with specific properties, and 
gauge the distribution of other properties over this set.  
When visualizing the resultset and the connections between 
them, we can understand how the different nodes in this 
resultset interrelate.  
Querying is undoubtedly powerful and fast, but we often 
miss the opportunity to find nodes or connections that we 
weren’t looking for initially. If one particular node is of 
interest to the user, chances are that neighboring nodes 
warrant some attention, even if they did not exactly match 
the filters set up by the query. 

2.2 Browsing 

In contrast, browsing does allow us to hop from one 
interesting item to another potentially interesting item. 
However, the size of modern datasets makes browsing 
challenging because it is often impossible to render every 
item explicitly beforehand. The question then becomes how 
to guide users to items in that dataset that might be 
interesting, even if they are not currently in the active view. 
In [FUR97], Furnas describes two concepts that underlie 
navigation in abstract data structures: effective view 
traversability and effective view navigability. Effective 
view traversability means that for each data item in the 
structure the number of neighboring items must be low and 

the number of steps between any two information items 
must be small (both compared to the total number of items). 
Partial graph views generally meet the second requirement, 
as the diameter of the graphs under consideration is small 
compared to their size. The first requirement can be 
enforced by using a degree of interest function to limit the 
number of connecting items where needed [HP09].  

Effective view navigability means that the user must be 
able to reliably find short paths between data items. Furnas 
formulates this in terms of outlink info, the information that 
tells a user which items are reachable from a specific data 
item. For effective navigability, outlink info must be 
complete and consistent, but to be usable it must be small. 
For graphs both of these constraints contradict, making 
navigability problematic in practice.  

Alternatively, outlink info can also be formulated as 
residue [FUR97] or information scent [PIR97]. Information 
scent is a concept that tells the user how useful it might be 
to follow a particular link to an information item. 
Information scent has been used mostly in the context of 
world wide web navigation, and scent based models have 
been used to analyze and predict web site browsing patterns 
[CPP00]. 

Instead of attempting to store general outlink info for 
every node in a potentially large graph, our proposal is to 
make the displayed outlink info contextual to the search task 
the user is currently facing. The search task of the user can 
be specified using the query paradigm. One the one hand 
this reduces the outlink info that needs to be displayed for a 
single node to a manageable size, but on the other hand 
requires us to compute outlink info on the fly for a specific 
query.  

3 Graphcues 

We render this compacted outlink info with a glyph-like 
representation called a graphcue. A graphcue is in many 
ways analogous to a physical signpost on a crossroad, 
indicating the direction and, optionally, distance to a 
particular destination of interest. Signposts on road 
networks typically indicate direction to a known geographic 
location or landmark of importance, allowing users to 
triangulate their approximate position. If a user knows what 
the relative position of their desired destination is with 
respect to such landmarks, they may use these directions to 
navigate. 

However, applying landmark-based navigation to abstract 
graphs requires that users already have an idea of what 
nodes might be considered landmarks and, more 
importantly, how they connect. In practice, this last point is 
a significant cognitive challenge as we cannot compute a 
static layout for these massive graphs. 

Instead of landmarks, we propose a solution that bases 
these signposts on users’ current information needs. In the 
real world, many signposts can be considered contextual: 
signposts to public restrooms are usually found in busy 
pedestrian locations with much foot traffic and signposts 
indicating currency exchange shops are typically found near 
national borders or important tourist sites. In a sense, such 
signposts are dependent on the (expected) navigational tasks 
at those particular locations. Instead of trying to provide a 
user with a global mental map of the entire structure, we 
postulate it is sufficient to simply guide them towards 
information items that are interesting given the context of 
their current task. 
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In the following discussion we will assume that an 
information finding task can be specified with one or more 
keywords. In practice, this search-by-query method of 
information finding is the most prevalent method of finding 
digital information, so users are typically very familiar with 
it. 

3.1 Graphcue computation 

Given a large graph G=(V,E) we define a partial view of 
that graph as a visualization of a subgraph G’=(V’, E’) of G. 
In a typical setup, a data server is responsible for storing the 
entire graph G, while a visualization client connecting to 
this server only needs to be concerned with the local partial 
view G’. Partial views can for example be constructed by 
extracting a subgraph around an initial point of interest 
[HP09] or, alternatively, by specifying a search term and 
extracting the graph induced by all nodes that match that 
search term. A partial view can be expanded if a node G’ 
has a neighbour that is in V but not yet in V’. The border-set 
B ⊆ V’ of G’ are those nodes in V’ that have one or more of 
such neighbours (see Figure 1a). Every search query Q that 
we execute on the full graph G returns a result set R ⊆ V. 
How exactly this result set is obtained is beyond the scope 
of this paper, but practical implementations could include a 
simple search against a full text index or more complex 
graph mining algorithms.  

We can obtain the set of graphcues that we need to 
display for a query by running a server-side multiple-source 
shortest path search from all nodes in border set B to all 
nodes in result set R (see Figure 1b). In the case of 
unweighted graphs, this can be implemented by a simple 
multiple-source Breadth First Search with worst-case 
complexity O(|E|+|N|). In the case of weighted graphs, a 
multi-source adaptation [EKP96] of a Dijkstra shortest path 
search can be used with O(|E|+k|N|) complexity, with k a 
small constant. For each node processed by the shortest path 
algorithm, we also keep track of the full path to its nearest 
source node. This administration can easily be updated each 
time an edge is traversed in the Breadth First Search, at no 
extra complexity cost. If two shortest paths are equal in 
length, we arbitrarily break ties and only keep one. Note 

that this means the total number of paths found will be equal 
to the number of nodes in R. The shortest path algorithm 
can be terminated if all nodes in R have been assigned their 
definitive shortest paths. 

The result of the shortest path algorithm is a forest of 
search trees containing all the shortest paths from source set 
B to sink set R – V’. This forest is transferred to the 
visualization client for processing. Note that every node in 
this tree has precisely one associated nearest source in B, 
which we will designate as that node’s root.  Figure 1b 
shows a concrete example with the three separate search 
trees displayed above Figure 1c, one for each root. 

A single graphcue on a node b ∈ B for a result set R then 
consists of a tuple (size,distance). Size represents the 
number of items in R that can be reached fastest via node b, 
while distance represents the minimum distance from b to 
any node in R. Concretely, a graphcue represents the 
number and distance of search results one can reach by 
following a particular edge or sequence of edges. 
Conceptually, a graphcue can be seen as a contextualized 
version of Furnas’ proposed [FUR97] outlink-info that 
depends on the user’s current information need.  

3.2 Graphcue abstraction 

Since we do not want to display the full path information 
from every node in B to every node in R – V’, we elect to 
only show detailed information on the first links in every 
path. We abstract the search tree for a single node such that 
it only displays aggregated high level information.  

For every node in the tree we can define an aggregated 
leaf size (i.e. the total number of nodes in R one is able to 
reach by following shortest paths through this node) and 
distance (i.e. the minimum number of steps it will take to 
reach a node in R through this node). Both of these metrics 
can easily be defined recursively: The size of a leafnode is 
one, and the size of an internal node is equal to the sum of 
sizes of their children. The minimum distance of a leafnode 
is zero and the minimum distance of an internal node is the 
minimum of the distances of their children, plus one. Note 
that distances are in effect measured from the tree’s root, 
not from the current internal node under consideration.  

(a) (b) 

Figure 1: Graphcue computation. (a) a partial view (grey) of a larger graph. The borderset is highlighted in dark grey (b) 
Search results (blue) and their shortest paths to nodes in the partial view. (c) Graphcues (orange) with shortest path 
search trees (top) aggregated at depth 0. (d) Graphcues with shortest path search trees aggregated at depth 1. (e) 
GraphCues with shortest path search trees aggregated at depth 2. 
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We can then compute the graphcues for a node b in B, by 
examining the nodes in the search tree rooted at b at a 
particular depth d. This depth governs number and level of 
abstraction of the cues displayed. Each node n in the search 
tree at depth d then is mapped to exactly one graphcue, with 
aggregated size and depth. We define the prefix of that cue 
as the path in the searchtree from b to n. By definition, the 
length of this prefix will be equal to the chosen depth d and 
every cue will have a unique, but not necessarily non-
overlapping, prefix. 

By varying the aggregation level of the search tree, we 
control the length of the prefix of the graphcue. To reuse the 
signpost analogy, we can also think of this length as the 
lookahead of a directional cue. Simple directional signs 
typically have a lookahead of 1, indicating a single direction 
(e.g. ‘restroom is to the right’). Alternatively, more complex 
signs or verbal directions typically have a larger lookahead 
(‘restroom is to the right, and then the first door on the 
left’). Note that we can effectively chain together multiple 
signs with lookahead of 1 to obtain the same effect as a 
single sign with a larger lookahead, but the user does not 
know what the next direction will be until they have 
followed the direction indicated by the current sign in the 
chain.  

For graphcues we define lookahead in a similar manner: a 
graphcue’s lookahead is the length of the cue’s prefix. Since 
the prefix of a cue is the path from the corresponding node 
in the searchtree, the lookahead is equal to the depth at 
which we have aggregated the search tree. We introduce n-
graphcue as shorthand for a graphcue with lookahead n 
(n>0). 0-graphcues (i.e. no lookahead) simply state which 
items are reachable at which distance but do no provide 
explicit directions to those items. In practice, we found that 
1-graphcues (Figure 1d) provide a good trade-off between 
visual simplicity and information density. Graphcues with 

lookahead 2 or higher require us to render part of the 
searchtrees for each node with a cue (see Figure 1e) and 
generally introduce too much visual complexity into the 
scene. 

3.3 Graphcue visual design 

In the previous paragraph we described how to compute a 
set of n-graphcues for a single query. For a particular query, 
a single graphcue attached to a node x is a tuple (size, depth) 
that represents the number and distance of search results one 
can reach fastest through x. To keep consistent with our 
node-link representation of the graph itself, a graphcue for a 
single query can then be represented by a basic node-link 
style glyph. The node portion of the glyph represents the 
entire subset of the search results that can be reached 
through a particular sequence of links (the prefix), which 
itself is represented by the link. This allows us to map the 
properties of a graphcue to its visual representation in an 
intuitive manner. The size of the reachable result set is 
mapped to the size of the node, while the minimum distance 
to the reachable subset is mapped to the length of the link 
(see Figure 1c and 1d).  

Now suppose that a user has requested graphcues for 
multiple queries. Each of these queries has its own result set 
R, which are not necessarily disjoint (Figure 2a). One option 
might be to process the search trees for each query 
separately, using color to indicate which cue belongs to 
which query. We can then simply attach all cues for each 
query to their respective roots. This poses a problem 
however, as we are no longer accurately representing 
directional information. It might be very relevant to the user 
that, by following a single prefix, they can reach nodes that 
match multiple queries. If we render separate cues for each 
query we give the incorrect impression that all prefixes are 

Figure 2: Visual representation of multi query graphcues. (a) A partial view of a network (grey), showing the hypothetical 
results from executing two queries (blue and red) on a set of nodes and their shortest paths to the current view. Note that 
one node was included in both search results. (b) The two merged search trees corresponding to these shortest paths. (c) 
Top tree 0-graphcue : we can reach 4 matching search results, 3 blue and 1 red, all at distance 2. Note that we effectively 
counted the node matching both searches twice (d) Bottom tree 0-graphcue: We can reach 4 matching search results (3 
blue and 1 red) in a minimum of 1 step. (e) Top tree 1-graphcue : by following the left branch of the tree we can reach 3 
results (2 blue and 1 red) after 2 steps, by following the right path we can reach 1 blue node after 2 steps. (f) Bottom tree 
1-graphcue: The right branch of the tree contains two aggregated tuples with depths 1 and 2. This results in a single link 
with two separate glyphs instead of a single combined pie glyph. 
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Figure 3: Using graphcues to direct 2 steps of iterative expansion in the case of (a) 0-graphcues and (b) 1-graphcues. Top 
row shows the currently visible nodes and search paths to hidden search results (indicated in blue). Nodes in the partial 
view that directly match a search result are circled. Bottom row shows the user’s view with the current partial graph and 
associated graphcues. Click actions are indicated by a hand icon. Note that clicking a 0-graphcue in (a) will bring in all 
search paths incident to the cue’s root, possible resulting in multiple nodes being added to the graph. Clicking a 1-
graphcue in (b) will only bring in those paths that lead to the indicated subset of search results. The prefix of each of those 
paths will be an incident edge to the root and the partial view will be expanded with at most one node for each click. 

Search 
trees 

User’s 
view 

(a) (b) 

mutually exclusive, and that there is not a single path from 
which we can reach nodes in both result sets. 

Instead of processing each query separately, we compute 
the complete search forests for each query and then merge 
them (Figure 2b). Aggregation can be done in a similar 
manner as explained in the previous paragraph, with the 
exception that we keep track of the aggregated values per 
query. This results in each internal node now being assigned 
a set of tuples {(size, distance)}, one for each query 
executed, instead of a single tuple. 

The visual representation of this set of tuples can then be 
done by a combined node-link glyph. Each query is 
assigned a separate color and we encode the size and depth 
variables in a similar manner as for a single query. More 
precisely, assume that we have executed n queries and for a 
single cue we need to represent a set of tuples {(s0, d0), (s1, 
d1)… (sn,dn)}. Note again that there is a difference between 
this set of tuples and the collection of singleton tuples 
{(s0,d0)}, {(s1,d1)}, … ,{(sn, dn)}. The latter represents a set 
of n distinct cues, each corresponding to a unique prefix and 
represented by a single graphcue. The former represents a 
set of n reachable subsets on paths having a common prefix.  

Like the single query case, we render this common prefix 
as a line. If all of the depth values are unique we can render 
the result sets as a set of n spheres on that line, where the 
distance between the sphere and the line’s origin represents 
the minimum distance to that particular result set (Figure 
2f). However, in most cases there will be tuples that have 
equal distance to the root. In this case we opt to represent all 
those tuples as a single sphere whose radius is proportional 
to the sum of the tuples’ sizes. A piechart subdivision then 
indicates the relative contribution of each query to the total 
size of the result set at that distance. 

Figure 2 illustrates these mappings. We ran two different 
queries Q1 and Q2 on the graph partially displayed in figure 
2a. Nodes matching Q1 are indicated in red, nodes matching 
Q2 are blue. Note that one node matched both queries. 
Figure 2b shows the two shortest path search trees 
originating from the dark grey nodes in the border set. In 

figure 2c we computed the 0-graphcue for the top search 
tree. For the root node in the tree we obtain tuples 
Q1:(size:1, dist:2) and Q2:(size:3,dist:2). Since both of these 
tuples have equal minimum distance, we render them as a 
single circle glyph, with a piechart indicating the relative 
sizes. A similar computation can be done for the graphcue 
in figure 2d. Figure 2e shows the 1-graphcues for the top 
searchtree. For each node in the first level of the tree we 
compute the aggregated values. For the left branch this 
yields Q1:(size:1, dist:2) and Q2:(size:2, dist:2), resulting in 
a single pie glyph of size 3 as distances are identical. The 
right branch is represented by a single graph clue Q2:(size:1, 
dist:2). Figure 2f shows a case where distances in the set 
differ. The right branch of the bottom searchtree yields a 
simple 1-graphcue of Q2:(size:1, dist:1). The node on the 
left branch has associated tuples Q1:(size:1, dist:1) and Q2 
(size:2, dist:2). Since these two tuples have the same prefix 
but different distances, we render them as two separate 
colored node glyphs of sizes 1 and 2, aligned on a single 
line. 

3.4 Graphcue layout 

The positions of graphcues are calculated by using the same 
layout algorithm as used for the nodes, but with 
modifications to the procedure. A new dummy node and 
edge are added to the graph for each graphcue. However, in 
order to preserve the user’s current mental model of the 
graph, all non-graphcue nodes’ positions are fixed. Within 
these constraints, the dummy node positions are optimized. 
After a new set of positions has been computed, dummy 
nodes and edges are removed and graphcues are drawn in 
their place. 

3.5 Graphcue interaction and expansion 

Expansion is what allows us to browse a partial view and is 
similar to following a hyperlink in a webpage. Expanding a 
node b in the border set of a partial view consists of adding 
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a number of b’s direct neighbours to the partial view. In this 
section we show that we can also use graphcues as triggers 
for expansion of the current partial view. 

By definition, the set of the first links of the prefixes of all 
cues attached to a node form a subset of that node’s incident 
edges. Clicking a cue attached to node x then amounts to the 
user indicating that he or she is interested in following paths 
that lead to the result set represented by this graphcue. By 
‘peeling off’ and explicitly rendering all of the first edges in 
this set of paths (along with their end nodes) we have 
created a bigger partial view for which we now need to 
display new graphcues.  

 Conveniently enough, we do not have to recompute the 
search trees every time a user chooses to expand the current 
partial view by clicking a graphcue. Since we are expanding 
our graph along the edges of a search tree, our new search 
trees will be subtrees of the original one. New graphcues 
can then be recomputed at the client side by reusing part of 
the original search tree. 

Figure 3 illustrates a concrete example of this, using both 
0-graphcues and 1-graphcues. The top row shows the 
relationship of the partial view to the full graph, the result 
set from running a search and the shortest paths to the nodes 
in the result set. The bottom row shows the user’s 
perspective of the partial view, where all paths have been 
abstracted with graphcues. Clicking the 0-graphcue in 
Figure 3a will add two edges to the partial view, and the 
graphcues can be recomputed in a straightforward manner. 
In the case of 1-graphcues (Figure 3b), the prefix of the cue 
always matches a single incident edge. By clicking a 1-
graphcue the user indicates that he or she wants to expand 
all search paths that start with this specific incident edge. 

Alternatively, we can use graphcues to improve on 
incremental navigation. As a single graphcue represents a 
set of searchresults along a unique path from the current 
node, we can also jump directly to the first node in that set, 
and skip expansion of every single node along the path. In 
this manner, users can navigate the graph by iteratively 
specifying textual queries and then following up by a 
complete expansion to the nearest result set. In out 
prototype we have implemented this feature under a 
contextual menu for a single graphcue. 

4 Application: Enterprise Social Network 
Discovery 

To evaluate the potential benefits of our approach we 
applied it to a massive social network of a large 
multinational software company. Recent work suggests that 
enterprise social networks can be utilized for a variety of 
tasks, such as expertise location [ES08], finding sociable 
individuals to collaborate with [CTL*09], and suggesting 
paths to request introductions to persons of interest 
[LEG*08]. However, such tasks do not require 
understanding the global pattern of connections across the 
company but instead understanding a partial set of 
connections relevant to the user. We wanted to see if 
augmenting such views with graphcues would assist in basic 
navigational tasks. 

The following case study is conducted on an enterprise 
social network consists of approximately 500,000 people 
and 30 million relationships. Individuals are connected 
based on organizational ties (i.e. sharing the same manager), 
co-authorship ties (i.e. writing a paper together) and 
friendship ties (i.e. friending on an online social network 
site). The relationships are weighted based upon the 
aggregation of all these ties and stronger relationships are 

rendered as thicker links. All data is stored centrally on a 
data server which listens to client request for data. 

The visualization client runs in a standard web browser 
using Adobe’s Flash framework. A force-directed algorithm 
using a stress majorization [GKN04] optimization method 
computes the node layouts. Instead of showing the full 
graph, we show partial views based on the user’s currently 
expressed interest. Users express interest by entering an 
initial multi-keyword query and the server returns the top n 
employees (by default, n=25) matching the topic and all of 
the relationships connecting them. Note that in order to 
protect user privacy, names and images have been 
anonymized with fake data, but the connections are based 
on actual data. 

When users want to navigate beyond this graph, they have 
two options. They can browse without guidance by clicking 
a node, bringing the node’s neighbours into the view. This 
naïve interaction model is similar to existing “expand-on-
demand” systems [TOU10, BRA10]. However, bringing all 
neighbours into the view may increase the partial view by 
hundreds of nodes resulting in a visually incomprehensible 
display. An advanced approach utilizes interest functions to 
bring in only the most important nodes relevant to the user 
task [HP08]. In our system, the top 3 neighbours will be 
brought into view using an interest function based on the 
neighbour’s relevance to the user’s initial search query from 
which the graph was originally extracted. While such 
browsing may result in interesting discoveries, it is difficult 
for users to reach interesting portions of the graph far away 
from their current location.  
We therefore augmented the system by providing 1-
Graphcues whenever users specify additional keywords 
describing nodes that interest them. In our system, content 
associated with each node is used to find proper matches 
(e.g. searching for ‘visualization’ will return people who 
feature the term visualization in their papers, patents, blog 
posts, bookmarks, etc.). The system will find the top r nodes 
(by default, r=10) that match the user’s new search. The 
data server then calculates the shortest path to each of these 
nodes, as described in Section 3.1. In our implementation, a 
full shortest path search took a few seconds. Finally the 
client attaches a graphcue to the border nodes on the 
shortest path. For any nodes that match those already 
present in the partial view, the nodes are surrounded by a 
halo that matches the color of the graphcues. In the next 
sections we illustrate different usage scenarios of how 
graphcues aid in the navigation of graphs.  

4.1 Location: Show me how a node connects. 

In the first scenario, we demonstrate a very simple task 
using graphcues: navigating to a specific node of interest, 
which might be hidden. The task is non-trivial in partial 
view navigation because users must remember the precise 
sequence of steps if they wish to return to a node of interest.  

The partial view shown is a social network of the top 10 
visualization experts across the enterprise. A manager, Fred 
Jameson, is not in this original network of experts, but is 
interested in engaging one of these visualization experts into 
his project. However, he is uncomfortable contacting these 
experts directly out of the blue. Instead, he wishes to find 
any contacts he may have in common with this group of 
experts. By running a simple textual search, he can quickly 
find the shortest path between him and the experts. As 
Figure 4 shows, one of the persons closest to him is Dan 
Misawa, whose node is attached to the graphcue. By 
expanding outward from Dan Misawa, he can see the 
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Figure 4: Using a graphcue to locate a single node that is 
outside the current partial view. Left image shows a 
closeup of the graph after one-click expansion of the cue. 

 

Figure 5: Displaying cues to a result set in a partial 
view. The orange result set has total size three. The left 
image shows the result of expanding the bottom most 
graphcue. 

 

Figure 6: Using multiple cues to find community 
overlap. By following the piechart graphcue matching 
two queries, we find an expert (Frank Adams) with 
connections to both. 

common connections and then leverage his existing social 
network to become introduced to Dan. 

4.2 Discovery: Show me how to reach a set of nodes. 

Navigation from the current partial view to a specific node, 
as outlined in the previous paragraph, is a specific instance 
of a more general use case. In practice, a user cannot always 
uniquely identify a node he wants to navigate to, but may 
have an idea of the general characteristic of the set of nodes 
he wants to reach.  

Concretely, imagine the same manager once again 
exploring the partial view of the top visualization experts. 
However, he is also interested in bringing data mining 
experts into his project. Ideally, he would like to find 
visualization and data mining experts that already share 
existing ties and thus may have a better chance of working 
well together. By specifying an additional contextual query 
(i.e. ‘data mining’), his current view of the visualization 
experts graph is augmented with shortest paths leading to 
the results of the ‘data mining’ query. 

From the image, he deduces that there are three paths to 
the ‘data mining’ subset – the orange graphcues via Amar 
and Betty (Figure 5). He decides that Amar would be a good 
person to contact since he has worked with him before. 
Figure 5 also shows the expansion of one of the graphcues 
emanating from Amar, leading to a data mining expert three 
steps out. 

4.3 Intersection: Show me how to reach the 
intersection of multiple disjoint groups of nodes. 

Because we can display the graphcues for two different 
queries in the same view, we can use them to correlate 
different sets of search results. The information that a single 
direction in the current view leads to a set of people 
matching two separate queries is useful in practice. As an 
example, suppose our manager returns to the subgraph of 
top visualization experts. However, this time he is interested 
in searching for data mining experts as well as machine 
learning experts. Because data mining and machine learning 
are related fields, he is curious if he can find experts with 
strong ties to both communities in his organization.  

Figure 6 shows the partial view with graphcues pointing 
to the manager himself (blue), ‘data mining’ (orange) and 
‘machine learning’ (green). Again, Betty is on the shortest 
path to the highest number of data mining and machine 
learning matches. In fact, one unique path leads to matches 
of both types. Figure 7 shows the graphcue expanded two 
steps, leading to Frank Adams – who has direct connections 
among both data mining and machine learning people. 
These attributes may suggest to the manager that this 
colleague would serve as a great source of information 
about experts in both fields. 

Note that this type of useful contextual information cannot 
always be obtained by more precisely specifying the initial 
search query. A user might be interested in the relations 
between people that match keyword ‘machine learning’ and 
people that match keyword ‘visualization’. Simply 
searching for these people with a single query ‘machine 
learning AND visualization’ might yield an empty result set, 
when there is no individual who matches both keywords. 
On the other hand, searching for ‘machine learning OR 
visualization’ will results in a single large set where the 
overlap is unclear. However, a cluster of people that each 
have one of the desired specialties but work closely together 
might exist. Whereas textual queries only examine the 
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associated information for each node, graphcues also take 
the structural properties of the graph into account. 

5 Related Work 

As mentioned in the introduction, one potential solution for 
visualizing large graphs is to not aim for a global overview 
of the entire graph, but rather to show a number of 
integrated local views around a point of interest. In the 
context of graph drawing this idea has been used many 
times before [ECH97] and samples can be found online at 
[BRA10] or [THE10]. A smaller number of commercial 
technologies offer componentized partial view layouts, such 
as [PAL09] or [TOU10]. By adding interactive capabilities, 
users can decide which point in their current partial view 
they are interested in exploring next – and then either bring 
in more data around it or re-center their view of the graph 
on that point. Although partial views are very useful for 
obtaining local views of graphs, they have two main 
weaknesses. Firstly, they do not deal well with graphs in 
which the median number of neighbours per node is 
relatively high (more than 10). Repeatedly expanding nodes 
would quickly produce an unreadable partial graph.  

Secondly, because partial graphs only provide localized 
views, it is difficult for users to orient themselves within the 
graph. One option is to develop targeted layout algorithms 
that enforce consistency between the layout of the local 
view and the global topology of the entire network 
[DMS*08]. Other interaction research has dealt with 
navigational aids that help in efficiently navigating from 
one node to a possibly invisible neighbour. Bring & Go or 
the Bring Neighbors Lens [TAS*06, MCH*09] deal with 
cases where a neighboring node is invisible because the 
entire graph is too large to fit the viewport. TugGraph 
[AMA09] attacks the same problem for hierarchical graphs, 
where a node may be invisible because it is contained in an 
abstracted cluster. Although all above mentioned techniques 
certainly improve the efficiency of navigating from one 
node to another, neither of them touches upon the core 
problem of deciding which node to navigate to next in a 
partial context. In this paper we are addressing precisely this 
shortcoming by adding cues that show users directions to 
nodes that match their current information needs, even if 
these nodes are distant.  

In terms of information representation, our proposal is 
similar to the Spacetree [GPB02] but generalized to graphs. 
Spacetrees also use the concept of visual abstractions of 
subtrees which show breadth and depth of the tree, 
combined with a textual search that highlights matches in 
the data. Instead of using the tree datastructure directly we 
compute BFS search trees based on a textual query and 
integrate those in the current partial view of our graph.  

Probably most relevant to the ideas outlined here are the 
concepts behind ScentTrails [OC03]. ScentTrails combine 
the advantages of query based search and web browsing by 
augmenting a traditional web interface with information 
scent based cues. ScentTrails are annotations on links to 
pages that more closely match the user’s specified interest. 
They guide the user towards pages that might contain the 
information he or she is looking for, but at the same time 
allow him or her to maintain contextual awareness. 
Annotation is done by changing the visual appearance of 
links, for example by changing the font size or changing 
background color. In this paper, we generalized the 
concepts of ScentTrails to arbitrary partial view networks. 
That is, we proposed a combination of query based search 
and browsing to guide users through a visualization of an 

arbitrary graph, visually indicating which paths lead to 
results matching a textual query. There are some notable 
differences with the ScentTrails algorithm, however. Firstly, 
we wish to better separate out the information contained in 
the textual query. To that end, we divide the resulting hits 
for each query part and code both distance to the current 
view and total relevance separately in our visualization. 
ScentTrails encodes total relevance for the entire query in a 
single variable (scent) that represents an aggregate value of 
both relevance and distance. Secondly, where ScentTrails 
uses a pre-computed scent conduit matrix using an 
expensive O(n3) iterative method, we compute our visual 
indicators online by using a simple shortest path search and 
aggregation. Finally, ScentTrails can only show the most 
relevant paths emanating from a single currently visible 
webpage, while we show how paths relate to a larger subset 
of the entire graph. 

6 Discussion & Future Work 

In the scenarios above, we have demonstrated how 
graphcues could be used as a navigational aid when 
browsing partial views. Without graphcues, these simple 
tasks become almost impossible to accomplish as the user 
lacks both a mental map of the global structure and 
navigational aids. However, we acknowledge that there are 
still outstanding challenges in improving the navigational 
experience.  

In our implementation, we rely on the user to search for 
nodes of interest. There are situations when users may not 
be able to express their interest with keyword searches. 
Similarly, there are graphs where node information is not 
rich and thus the capabilities to search are limited.  

Graphcues may also be implemented as landmarks in 
addition to guides. For instance, if users came across an 
interesting node and wished to annotate it as a landmark, 
they could continue to freely browse a graph while 
maintaining a reminder of where they came from.  

For certain scenarios, our methods for calculating 
graphcues may not be optimal. For instance, in our current 
design, only one graphcue is shown for each path, even if 
there are multiple shortest paths to a node in the result set. 
This drawback is particularly obvious in star-like graphs, 
where many paths lead to the same central node. In our 
current implementation, only one node will show a shortest 
path to that central node, implying that this is the closest 
node. In effect, other visible nodes might have equal 
distance and this fact is currently obscured. A potential 
solution only requires a simple modification to the path 
algorithm, as we can instruct it to store all shortest paths, 
not just a single one. This would then yield a set of search 
DAGs instead of search trees, which requires occasional 
duplication of a node on the search path over two DAGs. 
Actual graphcue computation and visualization can still be 
done in a similar manner. While the resulting display is a 
more accurate rendition of all shortest paths to a node of 
interest, in practice we found that the potentially large 
number of cues proved a distraction. Another drawback of 
this solution is that, whenever the current partial view 
changes (e.g. when a user expands a node), we need to rerun 
the breadth first search algorithm to account for new paths 
that might have appeared. As an example, after clicking the 
first graphcue in Figure 4b, the newly added node should 
also display a cue to the existing node at depth 1, since both 
shortest paths to that node have length 1. A full update of 
the search trees requires an additional O(|E|+|N|) 
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computation on the server side after each node expansion, 
which proved prohibitive in our case. 

Although we have provided a number of sample use cases 
on a realistic and large dataset, formal and longitudinal 
evaluation of the effectiveness of integrated browsing and 
searching would constitute a paper by itself. One option 
would be to design a synthetic task that requires both 
browsing and searching paradigms to solve and compare 
task execution times with and without cues. The same setup 
could be used to evaluate our current graphcue design to 
arrive at alternates. 

7 Conclusion 

As graphs become larger, partial views become an attractive 
solution in managing visual complexity. In this paper, we 
attempt to relieve some of the cognitive burden on users by 
integrating two information finding paradigms: querying 
and browsing. We also formalize the concept of a graphcue: 
a navigational aid to help users browse graphs towards 
nodes of interest. We have integrated querying and 
browsing into a system designed to support exploration of 
an enterprise social network of over 500,000 nodes and 30 
million edges. By demonstrating our ideas in a number of 
different user scenarios, we show how an integration of 
querying and browsing allow tasks to be completed that 
would have otherwise been nearly impossible, suggesting 
our approach is effective for navigation in partial graph 
visualizations.  
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