
Integrating Querying and Browsing in Partial Graph Visualizations

Adam Perer and Frank van Ham

IBM Research

Abstract
Partial graph visualizations, sometimes also referred to as online graph visualizations, are visual
representations of graphs that show only connections around a particular point of interest. They are often a
useful, less complex alternative to visual representations of graphs as a whole or can serve as visualizations
when the whole data is not accessible at once. Their biggest downside is that users quickly lose orientation
because they never get a sense of the structure of the whole graph. In this paper, we introduce techniques that
improve user exploration of partial graphs by integrating both browsing and querying information finding
paradigms. From a given partial graph, users can specify queries relevant to user tasks and the results will be
displayed as visual aids that helps users navigate representations of graphs with a limited look-ahead. Much
like signposts in the physical world, these graphcues highlight the shortest path to relevant nodes from the
user’s current location in the graph. We demonstrate these concepts on a social network of approximately
500,000 people and 30 million relationships.

Categories and Subject Descriptors: H.5.2 [User Interfaces]: User Interfaces – Information Visualization

1 Introduction

In a world where a substantial part of the data flood comes
in the form of abstract graphs (or networks) of ever
increasing size, many data-centric professions are struggling
to keep up. For instance, banks that investigate fraudulent
transactions must now deal with millions of transactions
between individual accounts and a typical software project
contains thousands of dependencies between modules.
Visual representations are essential to gaining insight into
these interconnected structures. However, for network data,
typical visualizations like node-link diagrams often lack
such scalability. Most node-link diagrams become a chaotic
web of overlapping nodes and tangled edges when
displaying even just a few hundred nodes. Furthermore,
many analysts may not be interested in global patterns but
instead are trying to learn something more about the
structures around particular data points. Typically, financial
fraud analysts may not be trying to understand the overall
patterns of account activity, but have to focus on untangling
the web of transactions around a particular account that has
been flagged as suspect. Programmers do not have to
understand all dependencies in each of their projects, but
may simply wish to know what the impact is of a proposed
change on a single module.

Struggling with the limitations of node-link diagrams and
demands of analysts, there have been several attempts to
deviate from the “Overview first, zoom and filter, details on
demand” visualization strategy as coined by [SHN96] when
it comes to navigating graphs. Proposed research [ECH97,
HP09, LPP06] and some commercial products have long
proposed non-overview browsing strategies. For instance,
the “Search, Show Context, Expand-on-Demand” strategy
[HP09] involves users picking a particular data point as
their focus and then having the system deliver an optimally

relevant context based upon a custom user-interest function.
Users can then navigate the visualization by expanding
context in their desired directions.

However, the main drawback of such approaches is that
users do not have a complete overview. Analysts can only
see a partial view of the graph surrounding a single data
point at any given time. Furthermore, the layout of the same
structure might be rendered differently depending on the
initial data point chosen by the user. This weakens one’s
ability to become familiar with the global position of data
points and to find other data points from one’s current
position.

This paper makes two novel contributions: Firstly, we
advocate the tight integration of two different search
paradigms in a single, coherent partial view network
visualization. Previous partial view graph visualizations
have mostly relied on the browsing paradigm, where users
are expected to guide themselves through the structure,
based on the currently visible subset of the structure.
Instead, we propose an integrated navigational model
consisting of alternating cycles of textual querying followed
by contextual browsing: Users view a part of the network,
can then run a textual query over the entire nodeset and can
subsequently see how the resultset relates to the currently
visible part. Although overview based graph visualizations
typically allow textual querying, doing this for partial view
graph visualizations is much harder, since they, by
definition, lack an overview of the entire graph. We are as
yet unaware of any work that attempts to integrate the
results from textual querying in partial view network
visualizations.

Secondly, we designed a visual encoding that takes into
account both size of the query results and their structural
relationship to the currently visible graph. In our proposed
encoding, which we call graphcues, we highlight direction,
distance and potential relevance in each visual cue. These

Perer and van Ham / Integrating Browsing and Querying in Partial Graph Visualizations

cues can then be used by the user to decide on a direction
for exploration beyond the partial view.

In the next section we briefly discuss research in
information finding. In Section 3 we describe the concepts
behind graphcues, detailing their computation and visual
representation. Section 4 shows how graphcues can be
applied in practice, using a large social network dataset as
an example. In Section 5, we give a short overview of other
related work in the area. Finally, Section 6 discusses
limitations and suggests further work, and we conclude in
Section 7.

2 Information finding in Graphs

Users typically adopt either a querying or browsing
paradigm to locate information they are interested in. The
first, searching, typically involves the user specifying a
number of keywords that match the information he or she is
interested in. These keywords are then used by a search
engine to produce one or more potential matches, which the
user can subsequently inspect in more detail. When
browsing, on the other hand, a user inspects an item because
it is related to the item she is currently viewing. Information
browsing typically involves navigating from one
information item to the next, for example by clicking a
hyperlink. Each paradigm has its own distinct advantages:
querying is convenient because it is fast, specific and
predictable, provided good keywords are available.
Browsing is slow but useful when exact keywords are
lacking or hard to formulate, or when the context of an
information item is important. In practice, potential
solutions to complex searches often consist of multiple sub
goals, each of which may require a different search strategy
[MS88].

2.1 Querying

Querying in graphs usually takes the form of direct queries
on node attributes, or structural queries using a graph query
language like SPARQL. With both of these types of queries
we can find (sets of) nodes with specific properties, and
gauge the distribution of other properties over this set.
When visualizing the resultset and the connections between
them, we can understand how the different nodes in this
resultset interrelate.
Querying is undoubtedly powerful and fast, but we often
miss the opportunity to find nodes or connections that we
weren’t looking for initially. If one particular node is of
interest to the user, chances are that neighboring nodes
warrant some attention, even if they did not exactly match
the filters set up by the query.

2.2 Browsing

In contrast, browsing does allow us to hop from one
interesting item to another potentially interesting item.
However, the size of modern datasets makes browsing
challenging because it is often impossible to render every
item explicitly beforehand. The question then becomes how
to guide users to items in that dataset that might be
interesting, even if they are not currently in the active view.
In [FUR97], Furnas describes two concepts that underlie
navigation in abstract data structures: effective view
traversability and effective view navigability. Effective
view traversability means that for each data item in the
structure the number of neighboring items must be low and

the number of steps between any two information items
must be small (both compared to the total number of items).
Partial graph views generally meet the second requirement,
as the diameter of the graphs under consideration is small
compared to their size. The first requirement can be
enforced by using a degree of interest function to limit the
number of connecting items where needed [HP09].

Effective view navigability means that the user must be
able to reliably find short paths between data items. Furnas
formulates this in terms of outlink info, the information that
tells a user which items are reachable from a specific data
item. For effective navigability, outlink info must be
complete and consistent, but to be usable it must be small.
For graphs both of these constraints contradict, making
navigability problematic in practice.

Alternatively, outlink info can also be formulated as
residue [FUR97] or information scent [PIR97]. Information
scent is a concept that tells the user how useful it might be
to follow a particular link to an information item.
Information scent has been used mostly in the context of
world wide web navigation, and scent based models have
been used to analyze and predict web site browsing patterns
[CPP00].

Instead of attempting to store general outlink info for
every node in a potentially large graph, our proposal is to
make the displayed outlink info contextual to the search task
the user is currently facing. The search task of the user can
be specified using the query paradigm. One the one hand
this reduces the outlink info that needs to be displayed for a
single node to a manageable size, but on the other hand
requires us to compute outlink info on the fly for a specific
query.

3 Graphcues

We render this compacted outlink info with a glyph-like
representation called a graphcue. A graphcue is in many
ways analogous to a physical signpost on a crossroad,
indicating the direction and, optionally, distance to a
particular destination of interest. Signposts on road
networks typically indicate direction to a known geographic
location or landmark of importance, allowing users to
triangulate their approximate position. If a user knows what
the relative position of their desired destination is with
respect to such landmarks, they may use these directions to
navigate.

However, applying landmark-based navigation to abstract
graphs requires that users already have an idea of what
nodes might be considered landmarks and, more
importantly, how they connect. In practice, this last point is
a significant cognitive challenge as we cannot compute a
static layout for these massive graphs.

Instead of landmarks, we propose a solution that bases
these signposts on users’ current information needs. In the
real world, many signposts can be considered contextual:
signposts to public restrooms are usually found in busy
pedestrian locations with much foot traffic and signposts
indicating currency exchange shops are typically found near
national borders or important tourist sites. In a sense, such
signposts are dependent on the (expected) navigational tasks
at those particular locations. Instead of trying to provide a
user with a global mental map of the entire structure, we
postulate it is sufficient to simply guide them towards
information items that are interesting given the context of
their current task.

Perer and van Ham / Integrating Browsing and Querying in Partial Graph Visualizations

In the following discussion we will assume that an
information finding task can be specified with one or more
keywords. In practice, this search-by-query method of
information finding is the most prevalent method of finding
digital information, so users are typically very familiar with
it.

3.1 Graphcue computation

Given a large graph G=(V,E) we define a partial view of
that graph as a visualization of a subgraph G’=(V’, E’) of G.
In a typical setup, a data server is responsible for storing the
entire graph G, while a visualization client connecting to
this server only needs to be concerned with the local partial
view G’. Partial views can for example be constructed by
extracting a subgraph around an initial point of interest
[HP09] or, alternatively, by specifying a search term and
extracting the graph induced by all nodes that match that
search term. A partial view can be expanded if a node G’
has a neighbour that is in V but not yet in V’. The border-set
B ⊆ V’ of G’ are those nodes in V’ that have one or more of
such neighbours (see Figure 1a). Every search query Q that
we execute on the full graph G returns a result set R ⊆ V.
How exactly this result set is obtained is beyond the scope
of this paper, but practical implementations could include a
simple search against a full text index or more complex
graph mining algorithms.

We can obtain the set of graphcues that we need to
display for a query by running a server-side multiple-source
shortest path search from all nodes in border set B to all
nodes in result set R (see Figure 1b). In the case of
unweighted graphs, this can be implemented by a simple
multiple-source Breadth First Search with worst-case
complexity O(|E|+|N|). In the case of weighted graphs, a
multi-source adaptation [EKP96] of a Dijkstra shortest path
search can be used with O(|E|+k|N|) complexity, with k a
small constant. For each node processed by the shortest path
algorithm, we also keep track of the full path to its nearest
source node. This administration can easily be updated each
time an edge is traversed in the Breadth First Search, at no
extra complexity cost. If two shortest paths are equal in
length, we arbitrarily break ties and only keep one. Note

that this means the total number of paths found will be equal
to the number of nodes in R. The shortest path algorithm
can be terminated if all nodes in R have been assigned their
definitive shortest paths.

The result of the shortest path algorithm is a forest of
search trees containing all the shortest paths from source set
B to sink set R – V’. This forest is transferred to the
visualization client for processing. Note that every node in
this tree has precisely one associated nearest source in B,
which we will designate as that node’s root. Figure 1b
shows a concrete example with the three separate search
trees displayed above Figure 1c, one for each root.

A single graphcue on a node b ∈ B for a result set R then
consists of a tuple (size,distance). Size represents the
number of items in R that can be reached fastest via node b,
while distance represents the minimum distance from b to
any node in R. Concretely, a graphcue represents the
number and distance of search results one can reach by
following a particular edge or sequence of edges.
Conceptually, a graphcue can be seen as a contextualized
version of Furnas’ proposed [FUR97] outlink-info that
depends on the user’s current information need.

3.2 Graphcue abstraction

Since we do not want to display the full path information
from every node in B to every node in R – V’, we elect to
only show detailed information on the first links in every
path. We abstract the search tree for a single node such that
it only displays aggregated high level information.

For every node in the tree we can define an aggregated
leaf size (i.e. the total number of nodes in R one is able to
reach by following shortest paths through this node) and
distance (i.e. the minimum number of steps it will take to
reach a node in R through this node). Both of these metrics
can easily be defined recursively: The size of a leafnode is
one, and the size of an internal node is equal to the sum of
sizes of their children. The minimum distance of a leafnode
is zero and the minimum distance of an internal node is the
minimum of the distances of their children, plus one. Note
that distances are in effect measured from the tree’s root,
not from the current internal node under consideration.

(a) (b)

Figure 1: Graphcue computation. (a) a partial view (grey) of a larger graph. The borderset is highlighted in dark grey (b)
Search results (blue) and their shortest paths to nodes in the partial view. (c) Graphcues (orange) with shortest path
search trees (top) aggregated at depth 0. (d) Graphcues with shortest path search trees aggregated at depth 1. (e)
GraphCues with shortest path search trees aggregated at depth 2.

(e)

Size : 1
Dist : 1

Size : 1
Dist : 2

Size : 1
Dist : 2

Size: 1
Dist: 1

(d)
Size : 2
Dist : 2

Size : 1
Dist : 2

Size : 1
Dist : 1

Size : 1
Dist : 1

(c)

Size : 4
Dist : 1

Size : 1
Dist : 1

Size : 1
Dist : 1

Perer and van Ham / Integrating Browsing and Querying in Partial Graph Visualizations

We can then compute the graphcues for a node b in B, by
examining the nodes in the search tree rooted at b at a
particular depth d. This depth governs number and level of
abstraction of the cues displayed. Each node n in the search
tree at depth d then is mapped to exactly one graphcue, with
aggregated size and depth. We define the prefix of that cue
as the path in the searchtree from b to n. By definition, the
length of this prefix will be equal to the chosen depth d and
every cue will have a unique, but not necessarily non-
overlapping, prefix.

By varying the aggregation level of the search tree, we
control the length of the prefix of the graphcue. To reuse the
signpost analogy, we can also think of this length as the
lookahead of a directional cue. Simple directional signs
typically have a lookahead of 1, indicating a single direction
(e.g. ‘restroom is to the right’). Alternatively, more complex
signs or verbal directions typically have a larger lookahead
(‘restroom is to the right, and then the first door on the
left’). Note that we can effectively chain together multiple
signs with lookahead of 1 to obtain the same effect as a
single sign with a larger lookahead, but the user does not
know what the next direction will be until they have
followed the direction indicated by the current sign in the
chain.

For graphcues we define lookahead in a similar manner: a
graphcue’s lookahead is the length of the cue’s prefix. Since
the prefix of a cue is the path from the corresponding node
in the searchtree, the lookahead is equal to the depth at
which we have aggregated the search tree. We introduce n-
graphcue as shorthand for a graphcue with lookahead n
(n>0). 0-graphcues (i.e. no lookahead) simply state which
items are reachable at which distance but do no provide
explicit directions to those items. In practice, we found that
1-graphcues (Figure 1d) provide a good trade-off between
visual simplicity and information density. Graphcues with

lookahead 2 or higher require us to render part of the
searchtrees for each node with a cue (see Figure 1e) and
generally introduce too much visual complexity into the
scene.

3.3 Graphcue visual design

In the previous paragraph we described how to compute a
set of n-graphcues for a single query. For a particular query,
a single graphcue attached to a node x is a tuple (size, depth)
that represents the number and distance of search results one
can reach fastest through x. To keep consistent with our
node-link representation of the graph itself, a graphcue for a
single query can then be represented by a basic node-link
style glyph. The node portion of the glyph represents the
entire subset of the search results that can be reached
through a particular sequence of links (the prefix), which
itself is represented by the link. This allows us to map the
properties of a graphcue to its visual representation in an
intuitive manner. The size of the reachable result set is
mapped to the size of the node, while the minimum distance
to the reachable subset is mapped to the length of the link
(see Figure 1c and 1d).

Now suppose that a user has requested graphcues for
multiple queries. Each of these queries has its own result set
R, which are not necessarily disjoint (Figure 2a). One option
might be to process the search trees for each query
separately, using color to indicate which cue belongs to
which query. We can then simply attach all cues for each
query to their respective roots. This poses a problem
however, as we are no longer accurately representing
directional information. It might be very relevant to the user
that, by following a single prefix, they can reach nodes that
match multiple queries. If we render separate cues for each
query we give the incorrect impression that all prefixes are

Figure 2: Visual representation of multi query graphcues. (a) A partial view of a network (grey), showing the hypothetical
results from executing two queries (blue and red) on a set of nodes and their shortest paths to the current view. Note that
one node was included in both search results. (b) The two merged search trees corresponding to these shortest paths. (c)
Top tree 0-graphcue : we can reach 4 matching search results, 3 blue and 1 red, all at distance 2. Note that we effectively
counted the node matching both searches twice (d) Bottom tree 0-graphcue: We can reach 4 matching search results (3
blue and 1 red) in a minimum of 1 step. (e) Top tree 1-graphcue : by following the left branch of the tree we can reach 3
results (2 blue and 1 red) after 2 steps, by following the right path we can reach 1 blue node after 2 steps. (f) Bottom tree
1-graphcue: The right branch of the tree contains two aggregated tuples with depths 1 and 2. This results in a single link
with two separate glyphs instead of a single combined pie glyph.

(a) (b)

(c) (e)

(d) (f)

Size : 1
Dist : 2
 &
Size : 3
Dist : 2

Size : 1
Dist : 1
 &
Size : 3
Dist : 1

Size : 1
Dist : 2
 &
Size : 2
Dist : 2

Size : 1
Dist : 2

Perer and van Ham / Integrating Browsing and Querying in Partial Graph Visualizations

Figure 3: Using graphcues to direct 2 steps of iterative expansion in the case of (a) 0-graphcues and (b) 1-graphcues. Top
row shows the currently visible nodes and search paths to hidden search results (indicated in blue). Nodes in the partial
view that directly match a search result are circled. Bottom row shows the user’s view with the current partial graph and
associated graphcues. Click actions are indicated by a hand icon. Note that clicking a 0-graphcue in (a) will bring in all
search paths incident to the cue’s root, possible resulting in multiple nodes being added to the graph. Clicking a 1-
graphcue in (b) will only bring in those paths that lead to the indicated subset of search results. The prefix of each of those
paths will be an incident edge to the root and the partial view will be expanded with at most one node for each click.

Search
trees

User’s
view

(a) (b)

mutually exclusive, and that there is not a single path from
which we can reach nodes in both result sets.

Instead of processing each query separately, we compute
the complete search forests for each query and then merge
them (Figure 2b). Aggregation can be done in a similar
manner as explained in the previous paragraph, with the
exception that we keep track of the aggregated values per
query. This results in each internal node now being assigned
a set of tuples {(size, distance)}, one for each query
executed, instead of a single tuple.

The visual representation of this set of tuples can then be
done by a combined node-link glyph. Each query is
assigned a separate color and we encode the size and depth
variables in a similar manner as for a single query. More
precisely, assume that we have executed n queries and for a
single cue we need to represent a set of tuples {(s0, d0), (s1,
d1)… (sn,dn)}. Note again that there is a difference between
this set of tuples and the collection of singleton tuples
{(s0,d0)}, {(s1,d1)}, … ,{(sn, dn)}. The latter represents a set
of n distinct cues, each corresponding to a unique prefix and
represented by a single graphcue. The former represents a
set of n reachable subsets on paths having a common prefix.

Like the single query case, we render this common prefix
as a line. If all of the depth values are unique we can render
the result sets as a set of n spheres on that line, where the
distance between the sphere and the line’s origin represents
the minimum distance to that particular result set (Figure
2f). However, in most cases there will be tuples that have
equal distance to the root. In this case we opt to represent all
those tuples as a single sphere whose radius is proportional
to the sum of the tuples’ sizes. A piechart subdivision then
indicates the relative contribution of each query to the total
size of the result set at that distance.

Figure 2 illustrates these mappings. We ran two different
queries Q1 and Q2 on the graph partially displayed in figure
2a. Nodes matching Q1 are indicated in red, nodes matching
Q2 are blue. Note that one node matched both queries.
Figure 2b shows the two shortest path search trees
originating from the dark grey nodes in the border set. In

figure 2c we computed the 0-graphcue for the top search
tree. For the root node in the tree we obtain tuples
Q1:(size:1, dist:2) and Q2:(size:3,dist:2). Since both of these
tuples have equal minimum distance, we render them as a
single circle glyph, with a piechart indicating the relative
sizes. A similar computation can be done for the graphcue
in figure 2d. Figure 2e shows the 1-graphcues for the top
searchtree. For each node in the first level of the tree we
compute the aggregated values. For the left branch this
yields Q1:(size:1, dist:2) and Q2:(size:2, dist:2), resulting in
a single pie glyph of size 3 as distances are identical. The
right branch is represented by a single graph clue Q2:(size:1,
dist:2). Figure 2f shows a case where distances in the set
differ. The right branch of the bottom searchtree yields a
simple 1-graphcue of Q2:(size:1, dist:1). The node on the
left branch has associated tuples Q1:(size:1, dist:1) and Q2
(size:2, dist:2). Since these two tuples have the same prefix
but different distances, we render them as two separate
colored node glyphs of sizes 1 and 2, aligned on a single
line.

3.4 Graphcue layout

The positions of graphcues are calculated by using the same
layout algorithm as used for the nodes, but with
modifications to the procedure. A new dummy node and
edge are added to the graph for each graphcue. However, in
order to preserve the user’s current mental model of the
graph, all non-graphcue nodes’ positions are fixed. Within
these constraints, the dummy node positions are optimized.
After a new set of positions has been computed, dummy
nodes and edges are removed and graphcues are drawn in
their place.

3.5 Graphcue interaction and expansion

Expansion is what allows us to browse a partial view and is
similar to following a hyperlink in a webpage. Expanding a
node b in the border set of a partial view consists of adding

Perer and van Ham / Integrating Browsing and Querying in Partial Graph Visualizations

a number of b’s direct neighbours to the partial view. In this
section we show that we can also use graphcues as triggers
for expansion of the current partial view.

By definition, the set of the first links of the prefixes of all
cues attached to a node form a subset of that node’s incident
edges. Clicking a cue attached to node x then amounts to the
user indicating that he or she is interested in following paths
that lead to the result set represented by this graphcue. By
‘peeling off’ and explicitly rendering all of the first edges in
this set of paths (along with their end nodes) we have
created a bigger partial view for which we now need to
display new graphcues.

 Conveniently enough, we do not have to recompute the
search trees every time a user chooses to expand the current
partial view by clicking a graphcue. Since we are expanding
our graph along the edges of a search tree, our new search
trees will be subtrees of the original one. New graphcues
can then be recomputed at the client side by reusing part of
the original search tree.

Figure 3 illustrates a concrete example of this, using both
0-graphcues and 1-graphcues. The top row shows the
relationship of the partial view to the full graph, the result
set from running a search and the shortest paths to the nodes
in the result set. The bottom row shows the user’s
perspective of the partial view, where all paths have been
abstracted with graphcues. Clicking the 0-graphcue in
Figure 3a will add two edges to the partial view, and the
graphcues can be recomputed in a straightforward manner.
In the case of 1-graphcues (Figure 3b), the prefix of the cue
always matches a single incident edge. By clicking a 1-
graphcue the user indicates that he or she wants to expand
all search paths that start with this specific incident edge.

Alternatively, we can use graphcues to improve on
incremental navigation. As a single graphcue represents a
set of searchresults along a unique path from the current
node, we can also jump directly to the first node in that set,
and skip expansion of every single node along the path. In
this manner, users can navigate the graph by iteratively
specifying textual queries and then following up by a
complete expansion to the nearest result set. In out
prototype we have implemented this feature under a
contextual menu for a single graphcue.

4 Application: Enterprise Social Network
Discovery

To evaluate the potential benefits of our approach we
applied it to a massive social network of a large
multinational software company. Recent work suggests that
enterprise social networks can be utilized for a variety of
tasks, such as expertise location [ES08], finding sociable
individuals to collaborate with [CTL*09], and suggesting
paths to request introductions to persons of interest
[LEG*08]. However, such tasks do not require
understanding the global pattern of connections across the
company but instead understanding a partial set of
connections relevant to the user. We wanted to see if
augmenting such views with graphcues would assist in basic
navigational tasks.

The following case study is conducted on an enterprise
social network consists of approximately 500,000 people
and 30 million relationships. Individuals are connected
based on organizational ties (i.e. sharing the same manager),
co-authorship ties (i.e. writing a paper together) and
friendship ties (i.e. friending on an online social network
site). The relationships are weighted based upon the
aggregation of all these ties and stronger relationships are

rendered as thicker links. All data is stored centrally on a
data server which listens to client request for data.

The visualization client runs in a standard web browser
using Adobe’s Flash framework. A force-directed algorithm
using a stress majorization [GKN04] optimization method
computes the node layouts. Instead of showing the full
graph, we show partial views based on the user’s currently
expressed interest. Users express interest by entering an
initial multi-keyword query and the server returns the top n
employees (by default, n=25) matching the topic and all of
the relationships connecting them. Note that in order to
protect user privacy, names and images have been
anonymized with fake data, but the connections are based
on actual data.

When users want to navigate beyond this graph, they have
two options. They can browse without guidance by clicking
a node, bringing the node’s neighbours into the view. This
naïve interaction model is similar to existing “expand-on-
demand” systems [TOU10, BRA10]. However, bringing all
neighbours into the view may increase the partial view by
hundreds of nodes resulting in a visually incomprehensible
display. An advanced approach utilizes interest functions to
bring in only the most important nodes relevant to the user
task [HP08]. In our system, the top 3 neighbours will be
brought into view using an interest function based on the
neighbour’s relevance to the user’s initial search query from
which the graph was originally extracted. While such
browsing may result in interesting discoveries, it is difficult
for users to reach interesting portions of the graph far away
from their current location.
We therefore augmented the system by providing 1-
Graphcues whenever users specify additional keywords
describing nodes that interest them. In our system, content
associated with each node is used to find proper matches
(e.g. searching for ‘visualization’ will return people who
feature the term visualization in their papers, patents, blog
posts, bookmarks, etc.). The system will find the top r nodes
(by default, r=10) that match the user’s new search. The
data server then calculates the shortest path to each of these
nodes, as described in Section 3.1. In our implementation, a
full shortest path search took a few seconds. Finally the
client attaches a graphcue to the border nodes on the
shortest path. For any nodes that match those already
present in the partial view, the nodes are surrounded by a
halo that matches the color of the graphcues. In the next
sections we illustrate different usage scenarios of how
graphcues aid in the navigation of graphs.

4.1 Location: Show me how a node connects.

In the first scenario, we demonstrate a very simple task
using graphcues: navigating to a specific node of interest,
which might be hidden. The task is non-trivial in partial
view navigation because users must remember the precise
sequence of steps if they wish to return to a node of interest.

The partial view shown is a social network of the top 10
visualization experts across the enterprise. A manager, Fred
Jameson, is not in this original network of experts, but is
interested in engaging one of these visualization experts into
his project. However, he is uncomfortable contacting these
experts directly out of the blue. Instead, he wishes to find
any contacts he may have in common with this group of
experts. By running a simple textual search, he can quickly
find the shortest path between him and the experts. As
Figure 4 shows, one of the persons closest to him is Dan
Misawa, whose node is attached to the graphcue. By
expanding outward from Dan Misawa, he can see the

Perer and van Ham / Integrating Browsing and Querying in Partial Graph Visualizations

Figure 4: Using a graphcue to locate a single node that is
outside the current partial view. Left image shows a
closeup of the graph after one-click expansion of the cue.

Figure 5: Displaying cues to a result set in a partial
view. The orange result set has total size three. The left
image shows the result of expanding the bottom most
graphcue.

Figure 6: Using multiple cues to find community
overlap. By following the piechart graphcue matching
two queries, we find an expert (Frank Adams) with
connections to both.

common connections and then leverage his existing social
network to become introduced to Dan.

4.2 Discovery: Show me how to reach a set of nodes.

Navigation from the current partial view to a specific node,
as outlined in the previous paragraph, is a specific instance
of a more general use case. In practice, a user cannot always
uniquely identify a node he wants to navigate to, but may
have an idea of the general characteristic of the set of nodes
he wants to reach.

Concretely, imagine the same manager once again
exploring the partial view of the top visualization experts.
However, he is also interested in bringing data mining
experts into his project. Ideally, he would like to find
visualization and data mining experts that already share
existing ties and thus may have a better chance of working
well together. By specifying an additional contextual query
(i.e. ‘data mining’), his current view of the visualization
experts graph is augmented with shortest paths leading to
the results of the ‘data mining’ query.

From the image, he deduces that there are three paths to
the ‘data mining’ subset – the orange graphcues via Amar
and Betty (Figure 5). He decides that Amar would be a good
person to contact since he has worked with him before.
Figure 5 also shows the expansion of one of the graphcues
emanating from Amar, leading to a data mining expert three
steps out.

4.3 Intersection: Show me how to reach the
intersection of multiple disjoint groups of nodes.

Because we can display the graphcues for two different
queries in the same view, we can use them to correlate
different sets of search results. The information that a single
direction in the current view leads to a set of people
matching two separate queries is useful in practice. As an
example, suppose our manager returns to the subgraph of
top visualization experts. However, this time he is interested
in searching for data mining experts as well as machine
learning experts. Because data mining and machine learning
are related fields, he is curious if he can find experts with
strong ties to both communities in his organization.

Figure 6 shows the partial view with graphcues pointing
to the manager himself (blue), ‘data mining’ (orange) and
‘machine learning’ (green). Again, Betty is on the shortest
path to the highest number of data mining and machine
learning matches. In fact, one unique path leads to matches
of both types. Figure 7 shows the graphcue expanded two
steps, leading to Frank Adams – who has direct connections
among both data mining and machine learning people.
These attributes may suggest to the manager that this
colleague would serve as a great source of information
about experts in both fields.

Note that this type of useful contextual information cannot
always be obtained by more precisely specifying the initial
search query. A user might be interested in the relations
between people that match keyword ‘machine learning’ and
people that match keyword ‘visualization’. Simply
searching for these people with a single query ‘machine
learning AND visualization’ might yield an empty result set,
when there is no individual who matches both keywords.
On the other hand, searching for ‘machine learning OR
visualization’ will results in a single large set where the
overlap is unclear. However, a cluster of people that each
have one of the desired specialties but work closely together
might exist. Whereas textual queries only examine the

Perer and van Ham / Integrating Browsing and Querying in Partial Graph Visualizations

associated information for each node, graphcues also take
the structural properties of the graph into account.

5 Related Work

As mentioned in the introduction, one potential solution for
visualizing large graphs is to not aim for a global overview
of the entire graph, but rather to show a number of
integrated local views around a point of interest. In the
context of graph drawing this idea has been used many
times before [ECH97] and samples can be found online at
[BRA10] or [THE10]. A smaller number of commercial
technologies offer componentized partial view layouts, such
as [PAL09] or [TOU10]. By adding interactive capabilities,
users can decide which point in their current partial view
they are interested in exploring next – and then either bring
in more data around it or re-center their view of the graph
on that point. Although partial views are very useful for
obtaining local views of graphs, they have two main
weaknesses. Firstly, they do not deal well with graphs in
which the median number of neighbours per node is
relatively high (more than 10). Repeatedly expanding nodes
would quickly produce an unreadable partial graph.

Secondly, because partial graphs only provide localized
views, it is difficult for users to orient themselves within the
graph. One option is to develop targeted layout algorithms
that enforce consistency between the layout of the local
view and the global topology of the entire network
[DMS*08]. Other interaction research has dealt with
navigational aids that help in efficiently navigating from
one node to a possibly invisible neighbour. Bring & Go or
the Bring Neighbors Lens [TAS*06, MCH*09] deal with
cases where a neighboring node is invisible because the
entire graph is too large to fit the viewport. TugGraph
[AMA09] attacks the same problem for hierarchical graphs,
where a node may be invisible because it is contained in an
abstracted cluster. Although all above mentioned techniques
certainly improve the efficiency of navigating from one
node to another, neither of them touches upon the core
problem of deciding which node to navigate to next in a
partial context. In this paper we are addressing precisely this
shortcoming by adding cues that show users directions to
nodes that match their current information needs, even if
these nodes are distant.

In terms of information representation, our proposal is
similar to the Spacetree [GPB02] but generalized to graphs.
Spacetrees also use the concept of visual abstractions of
subtrees which show breadth and depth of the tree,
combined with a textual search that highlights matches in
the data. Instead of using the tree datastructure directly we
compute BFS search trees based on a textual query and
integrate those in the current partial view of our graph.

Probably most relevant to the ideas outlined here are the
concepts behind ScentTrails [OC03]. ScentTrails combine
the advantages of query based search and web browsing by
augmenting a traditional web interface with information
scent based cues. ScentTrails are annotations on links to
pages that more closely match the user’s specified interest.
They guide the user towards pages that might contain the
information he or she is looking for, but at the same time
allow him or her to maintain contextual awareness.
Annotation is done by changing the visual appearance of
links, for example by changing the font size or changing
background color. In this paper, we generalized the
concepts of ScentTrails to arbitrary partial view networks.
That is, we proposed a combination of query based search
and browsing to guide users through a visualization of an

arbitrary graph, visually indicating which paths lead to
results matching a textual query. There are some notable
differences with the ScentTrails algorithm, however. Firstly,
we wish to better separate out the information contained in
the textual query. To that end, we divide the resulting hits
for each query part and code both distance to the current
view and total relevance separately in our visualization.
ScentTrails encodes total relevance for the entire query in a
single variable (scent) that represents an aggregate value of
both relevance and distance. Secondly, where ScentTrails
uses a pre-computed scent conduit matrix using an
expensive O(n3) iterative method, we compute our visual
indicators online by using a simple shortest path search and
aggregation. Finally, ScentTrails can only show the most
relevant paths emanating from a single currently visible
webpage, while we show how paths relate to a larger subset
of the entire graph.

6 Discussion & Future Work

In the scenarios above, we have demonstrated how
graphcues could be used as a navigational aid when
browsing partial views. Without graphcues, these simple
tasks become almost impossible to accomplish as the user
lacks both a mental map of the global structure and
navigational aids. However, we acknowledge that there are
still outstanding challenges in improving the navigational
experience.

In our implementation, we rely on the user to search for
nodes of interest. There are situations when users may not
be able to express their interest with keyword searches.
Similarly, there are graphs where node information is not
rich and thus the capabilities to search are limited.

Graphcues may also be implemented as landmarks in
addition to guides. For instance, if users came across an
interesting node and wished to annotate it as a landmark,
they could continue to freely browse a graph while
maintaining a reminder of where they came from.

For certain scenarios, our methods for calculating
graphcues may not be optimal. For instance, in our current
design, only one graphcue is shown for each path, even if
there are multiple shortest paths to a node in the result set.
This drawback is particularly obvious in star-like graphs,
where many paths lead to the same central node. In our
current implementation, only one node will show a shortest
path to that central node, implying that this is the closest
node. In effect, other visible nodes might have equal
distance and this fact is currently obscured. A potential
solution only requires a simple modification to the path
algorithm, as we can instruct it to store all shortest paths,
not just a single one. This would then yield a set of search
DAGs instead of search trees, which requires occasional
duplication of a node on the search path over two DAGs.
Actual graphcue computation and visualization can still be
done in a similar manner. While the resulting display is a
more accurate rendition of all shortest paths to a node of
interest, in practice we found that the potentially large
number of cues proved a distraction. Another drawback of
this solution is that, whenever the current partial view
changes (e.g. when a user expands a node), we need to rerun
the breadth first search algorithm to account for new paths
that might have appeared. As an example, after clicking the
first graphcue in Figure 4b, the newly added node should
also display a cue to the existing node at depth 1, since both
shortest paths to that node have length 1. A full update of
the search trees requires an additional O(|E|+|N|)

Perer and van Ham / Integrating Browsing and Querying in Partial Graph Visualizations

computation on the server side after each node expansion,
which proved prohibitive in our case.

Although we have provided a number of sample use cases
on a realistic and large dataset, formal and longitudinal
evaluation of the effectiveness of integrated browsing and
searching would constitute a paper by itself. One option
would be to design a synthetic task that requires both
browsing and searching paradigms to solve and compare
task execution times with and without cues. The same setup
could be used to evaluate our current graphcue design to
arrive at alternates.

7 Conclusion

As graphs become larger, partial views become an attractive
solution in managing visual complexity. In this paper, we
attempt to relieve some of the cognitive burden on users by
integrating two information finding paradigms: querying
and browsing. We also formalize the concept of a graphcue:
a navigational aid to help users browse graphs towards
nodes of interest. We have integrated querying and
browsing into a system designed to support exploration of
an enterprise social network of over 500,000 nodes and 30
million edges. By demonstrating our ideas in a number of
different user scenarios, we show how an integration of
querying and browsing allow tasks to be completed that
would have otherwise been nearly impossible, suggesting
our approach is effective for navigation in partial graph
visualizations.

Acknowledgments

We thank Erel Uziel for his assistance in utilizing the
enterprise social network data for our application.

References

[AMA09] D. ARCHAMBAULT, T. MUNZNER AND D. AUBER.
TugGraph: Path-Preserving Hierarchies for Browsing
Proximity and Paths in Graphs. In Proceedings IEEE
Pacific Visualization, pp. 113—121, 2009.

[BRA10] THE BRAIN. http://www.thebrain.com. Accessed
December 2010.

[CTL*09] D. CHEN, J. TANG, J. LI, AND L. ZHOU.
Discovering the staring people from social networks. In
Proceedings of WWW ’09 pp. 1219-1220, 2009.

[CPP00] E. CHI, P. PIROLLI AND J. PITKOW. The scent of a
site: A system for analyzing and predicting information
scent, usage and usability of a Web site. In Proceedings
CHI 2000. ACM Press, New York, pp. 161-168. 2000.

[DMS*08] T. DWYER ET AL. Exploration of Networks using
overview+detail with Constraint-based cooperative
layout. IEEE Transactions on Visualization and
Computer Graphics, vol. 14 (6), pp. 1293-1300, 2008.

[ECH97] P. EADES, F. COHN AND M.L. HUANG. Online
animated graph drawing for web navigation, Springer
Lecture Notes in Computer Science, Volume 1353, 1997

[EKP96] P.W. EKLUND ET AL. A Dynamic Multi-source
Dijkstra’s Algorithm for Vehicle Routing. Australian
and New Zealand Conference on Intelligent Information
Systems (ANZIIS '96), pp. 329-333, IEEE press, 1996.

[ES08] K. EHRLICH AND N. SHAMI, Searching for expertise.
In Proceedings of the SIGCHI Conference on Human

factors in Computing Systems. ACM Press, New York,
pp. 1093-1096, 2008.

[FUR97] G.W. FURNAS. Effective View Navigation. In
Proceedings of the SIGCHI Conference on Human
factors in Computing Systems, pp. 367-374, 1997.

[GKN04] E. GANSNER, Y. KOREN, AND S. NORTH, Graph
Drawing by Stress Majorization, Proc. 12th Int.Symp.
Graph Drawing (GD’04), pp. 239–250, 2004.

[GPB02] J. GROSJEAN, C. PLAISANT, AND B. BEDERSON,
SpaceTree: Supporting Exploration in Large Node Link
Tree, Design Evolution and Empirical Evaluation. In
Proc. of IEEE InfoVis 2002, pp. 57 -64, 2002.

[HP09] F. VAN HAM AND A. PERER, “Search, Show Context,
Expand on Demand”: Supporting Large Graph
Exploration with Degree-of-Interest, IEEE Transactions
on Visualization and Computer Graphics, vol. 15 (6),
pp. 953-960, 2009.

[LPP06] B. LEE ET AL. TreePlus: Interactive Exploration of
Networks with Enhanced Tree Layouts. IEEE
Transactions on Visualization and Computer Graphics,
vol. 12 (6), pp. 1414-1426, 2006.

[LEG*08] C. LIN, K. EHRLICH, V. GRIFFITHS-FISHER AND C.
DESFORGES. SmallBlue: People mining for expertise
search. In IEEE MultiMedia 15(1), pp. 78-84, 2008.

[MS88] G. MARCHIONINI AND B. SHNEIDERMAN. Finding
Facts vs. Browsing Knowledge in Hypertext Systems.
IEEE Computer. Vol. 21(1), pp. 70-80, 1988.

[MCH*09] T. MOSCOVICH, F. CHEVALIER, N. HENRY, E.
PIETRIGA, AND J.D. FEKETE. Topology-aware navigation
in large networks, In Proceedings of CHI ‘09, pp. 2319-
2328, 2009.

[OC03] C. OLSTON AND E. CHI. ScentTrails: Integrating
Browsing and Searching on the Web. ACM
Transactions on Computer-Human Interaction
(TOCHI), vol. 10(3), pp. 177 – 197, 2003.

[PAL09] PALANTIR TECHNOLOGIES. http://www.palantirtech
com/. Accessed December 2010.

[PIR97] P. PIROLLI. Computational Models of Information
Scent-following in a Very Large Browsable Text
Collection. In Proceedings of CHI ‘97, pp. 3-10, 1997.

[SHN96] B. SHNEIDERMAN, The eyes have it: a task by data
type taxonomy for information visualizations. In
Proceedings of the IEEE Symposium on Visual
Languages, pp. 336-343, 1996.

 [TAS*06] C. TOMINSKI, ET AL. Fisheye Treeviews and
Lenses for Graph Visualization. International
Conference on Information Visualisation (IV06),
London, UK, 2006.

[TOU10] TOUCHGRAPH LLC. http://www.touchgraph.com.
Accessed December 2010.

[THE10] VISUAL THESAURUS. http://www.visualthesaurus.
com. Accessed December 2010.

