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Iterative cohort analysis and
exploration

Zhiyuan Zhang1, David Gotz2 and Adam Perer3

Abstract
Cohort analysis is a widely used technique for the investigation of risk factors for groups of people. It is com-
monly employed to gain insights about interesting subsets of a population in fields such as medicine, bioinfor-
matics, and social science. The nature of these analyses is evolving as larger collections of data about
individuals become available. Examples of emerging large-scale data sources include electronic medical
record systems and social network datasets. When domain experts perform cohort analyses using such mas-
sive datasets, they typically rely on a team of technologists to help manage and process the data. This results
in a slow and cumbersome analysis process in which iterative exploration is difficult. To address this chal-
lenge, we are exploring technologies designed to help domain experts work more independently and more
quickly. This article describes CAVA, a platform for Cohort Analysis via Visual Analytics. We introduce three
primary types of artifacts (cohorts, views, and analytics) and an architecture that connects these elements
together to provide an interactive exploratory analysis environment designed for domain experts. In addition
to the CAVA design, this article presents two use cases from the health-care domain and a domain-expert
evaluation to demonstrate the power of our approach.
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Introduction

Cohort analysis is a common technique used in a vari-
ety of fields to study risk factors within population
groups. In fields as diverse as health care and ecology,
the cohort study is a foundational tool that helps
experts uncover correlations between specific risk
metrics and the underlying attributes of individuals
within the study population.

Cohort studies are often performed prospectively
using techniques that are statistically mature and pow-
erful. However, the analytical process is often slow
and expensive when collecting data prospectively.
Retrospective analyses, which use previously collected
data, are a possible alternative. Unfortunately, the use
of retrospective studies has been relatively limited due
to the historical difficulty in collecting and analyzing
very large datasets. However, as more and more data
become electronic, very large repositories suitable for

retrospective cohort analysis are becoming increasingly
common. For example, large medical institutions are
now adopting electronic medical record (EMR) sys-
tems in increasing numbers. These data warehouses
can contain comprehensive historical observations of
millions of people over time spans of many years.

The increasing availability of such data helps over-
come the fundamental limitations of the retrospective

1The State University of New York at Stony Brook, Stony Brook,
NY, USA

2The University of North Carolina at Chapel Hill, Chapel Hill, NC,
USA

3IBM Thomas J. Watson Research Center, Yorktown Heights, NY,
USA

Corresponding author:
David Gotz, The University of North Carolina at Chapel Hill, 206
Manning Hall, CB #3360, Chapel Hill, NC 27599, USA.
Email: gotz@unc.edu

 by Adam Perer on October 27, 2014ivi.sagepub.comDownloaded from 



approach. In theory, domain experts can use these data
to perform interactive, exploratory cohort studies with-
out the overheads associated with prospective tech-
niques. In practice, however, interactive cohort studies
exploring large-scale retrospective data collections pro-
duce their own set of challenges. Data management,
analysis, and summarization all become more difficult
and typically lead to the use of more advanced technolo-
gies. Instead of relying on a spreadsheet and some basic
statistics, users must also use technologies such as data-
bases, data mining, and visualization tools to help make
sense of the large scale of data they wish to examine.

The end result is that domain-expert users are still
critically constrained. When new hypotheses are devel-
oped, users no longer have to design a new prospective
study. However, they now need to speak with a team
of technologists to perform data transformations, run
data mining routines, and visualize the results. This
process can be both slow and expensive, and the
domain experts are still unable to quickly perform
iterative and exploratory analyses on their own.

To help address this challenge, we have designed
CAVA—a platform for Cohort Analysis via Visual
Analytics—which is designed to help domain experts
work faster and more independently when performing
retrospective cohort studies (Figure 1). Motivated by
the needs of real-world analysts working in the health-
care domain, CAVA follows a novel system design cen-
tered around three primary types of artifacts: (1)
cohorts, (2) views, and (3) analytics. Cohorts are
CAVA’s fundamental data construct and represent a
set of people and their associated properties. Views are
visualization components that graphically display a
cohort and allow users to directly manipulate or refine
the underlying cohort. Analytics are computational ele-
ments that create, expand, and/or alter the contents of
a cohort. In this way, CAVA treats both Views and
Analytics as functional components which operate on an
input cohort and produce an output cohort. Building on
this design principle, CAVA allows users to chain
together complex sequences of steps that intermix
both manual and machine-driven cohort manipula-
tions. This capability is provided through an easy-
to-use, web-based user interface that supports an
interactive exploratory analysis environment for retro-
spective cohort studies.

This article describes CAVA in more detail, begin-
ning with a discussion of the user requirements we
identified in the health-care domain that motivate our
work. Then, after a brief review of related work, we
introduce the CAVA design and highlight how user
requirements drove several key aspects of our
approach. We further demonstrate the utility of our
approach by describing our prototype CAVA imple-
mentation and introducing two use cases where CAVA

was used to analyze data from a population of at-risk
medical patients. Finally, we conduct an evaluation to
justify the usability and the applicability of our
approach.

Motivating scenario in health-care domain

CAVA is designed to provide a general solution for
interactive cohort analysis. However, the design deci-
sions embodied in CAVA are motivated by a set of
real-world requirements distilled from our target
domain: health-care population analysis.

Our work was originally inspired by a problem faced
by a group of physicians, who, together with a team of
technologists, were trying to uncover new insights
about a population of cardiology patients being treated
at their institution by analyzing a collection of elec-
tronic medical data. Because the cardiologists work in
a relatively large medical organization, the doctors
have access to longitudinal records from hundreds of
thousands of patients, each with tens of thousands of
features. Many organizations have access to even more
data, often storing millions of patient records spanning
decades of historical treatments.

As one would expect of highly trained domain
experts, the cardiologists have extensive medical
knowledge and intimate familiarity with the various
lab tests, diagnoses, and other pieces of information in
the dataset. Unsurprisingly, however, these same clini-
cians have relatively limited technology skills. For this
reason, a team of technologists—software engineers,
database administrators, data miners, and visualization
designers—work together with the clinicians to gather
and transform data, build systems to perform analysis,
and present the results for discussion.

The typical workflow is as follows: first the physi-
cians propose several hypotheses; based on these
hypotheses, a database expert prepares the necessary
Structured Query Language (SQL) queries and data
transformation scripts to gather data for the patient
cohorts specified by the clinician’s hypotheses. Then,
data analysts work with the patient data to build mod-
els that process and extract additional information
(e.g. risk scores) about the patients in the cohorts.
Then, finally, the analytical results are visualized for
the clinicians who re-engage to see whether the data
support their hypotheses.

Of course, the clinicians’ hypotheses may be wrong.
Therefore, this process is typically repeated iteratively
as doctors explore new alternatives: ‘‘There were only
10 patients in that group? What if we change con-
straints?’’ ‘‘What about women, do they have a similar
distribution?’’ ‘‘What risk scores do these patients have
for other conditions?’’ ‘‘Are there more patients like
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these and do they have similar outcomes?’’ Moreover,
even when hypotheses appear to be correct, they often
lead to a large number of follow-up questions.
Therefore, nearly all hypotheses eventually result in
additional work for the team of technologists who dili-
gently work to help answer the clinicians’ subsequent
questions.

As one can see from this iterative workflow, the reli-
ance on technology professionals as intermediaries can
result in a slow and cumbersome process. Ideally, clin-
icians would be able to independently conduct ad hoc
exploration and analysis: visually defining and refining
cohorts, and requesting interactive analytics, and look-
ing at the results without any manual assistance. It is
this ideal goal that we are striving to reach in our work.

Motivated by the health-care cohort analysis sce-
nario outlined above, we have identified the following
set of key requirements that should be satisfied in an
ideal solution:

! Easy cohort definition. Clinical domain experts
should be able to easily select cohorts of patients

for investigation. This can be in the form of both
computational analyses which automatically iden-
tify interesting cohorts from a large population
and visual interfaces that allow clinicians to define
cohorts ad hoc.

! Flexible visualization. Clinical domain experts
should be able to flexibly visualize cohorts, pivot-
ing between various visualization metaphors as
part of an interactive exploratory process without
requiring any intervention by technology experts.

! Flexible analysis. Clinical domain experts should be
able to flexibly perform analyses of various kinds
on a cohort without requiring any intervention by
technology experts.

! Cohort refinement and expansion. Clinical domain
experts should be able to easily constrain and/or
expand cohorts based on discovered findings as
part of their exploration.

! Iterative analysis. The above requirements should
be supported within an iterative process that allows
refinement and exploration during an open-ended
investigation.

Figure 1. CAVA, shown here being applied to a population of cardiac patients, provides an interactive visual analytics
environment for iterative exploratory cohort analysis. Through CAVA, users can chain together complex analysis
pathways that combine interactive cohort refinements with automated analytics algorithms in an ad hoc exploratory
fashion.
CAVA: Cohort Analysis via Visual Analytics.
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These design requirements were informed by
unstructured interviews about workflow and task
requirements conducted with a number of clinicians.
As part of ongoing research collaborations on a range
of medical informatics projects, we have captured
input from physicians with different specialties, home
institutions, and work experiences. The length of time
spent interacting with each clinician has varied widely,
ranging from a few hours to years of close collabora-
tion. Using the insights obtained from our clinical col-
laborators, we developed the consolidated set of
common requirements presented here.

These requirements form CAVA’s core set of design
guidelines as reflected in section ‘‘System design.’’
Moreover, the use cases outlined in section ‘‘Use
cases’’ have been included to demonstrate how our
approach helps satisfy these requirements when
applied to our motivating problem domain. Finally,
key benefits from our approach are documented in the
results of the evaluation presented in section
‘‘Domain-expert evaluation.’’

Related work

This section provides an overview of related work. We
focus on techniques most relevant to CAVA, including
general cohort analysis, data analysis algorithms, visual
analytics techniques, and visual analytics systems
applied to health care and beyond.

Cohort analysis

A widely used technique in fields such as ecology,
bioinformatics, social science, and health care, cohort
analysis is a research method for analyzing changes in
group members through the use of a set of statistical
techniques.1 One of the most common ways that
cohort analysis is used is to analyze medical risk factors
in clinical studies.2 Often, such studies are designed to
follow a group of people without a disease. Based on
longitudinal observations, a correlation analysis is per-
formed to determine the risk of a subject contracting
the disease by correlation analysis and the relative
importance of various risk factors. In epidemiology,3

similar techniques are used to find correlations or cau-
sal relations between a given disease and the exposure
to certain environmental conditions or behaviors.

Most often, cohort studies are performed prospec-
tively. Cohorts of interest are defined in advance based
on an expert’s initial hypotheses (e.g. defining cohorts
with and without a given pharmacological exposure,
with various controls over the population’s characteris-
tics). A predetermined set of data for the individuals
in these cohorts is then gathered over time and eventu-
ally analyzed to uncover significant correlations. While

this approach can produce very valuable insights, pro-
spective studies of this form typically require expensive
data gathering efforts and take significant time to
design and execute. Moreover, any changes to the ini-
tial hypotheses most often result in additional time-
consuming studies with new populations. This burden
limits a domain expert’s ability to easily explore and
refine hypotheses based on his/her findings.

In contrast, retrospective cohort analyses offer sig-
nificantly more flexibility. Because these studies utilize
already-captured data records, an expert can investi-
gate new hypotheses or find valuable correlation with-
out the time or expense associated with designing and
running an additional prospective study. However, the
method of retrospective study also has issues. While
valuable correlations may be discovered, such a tech-
nique is not suitable to prove causation. Moreover,
this approach is often at higher risk to bias and may
miss rare events. For this reason, retrospective studies
are most effective when applied to larger sample sizes.
Nevertheless, the large scale of retrospective data often
requires a domain expert to work with a team of tech-
nology experts (i.e. database support, data mining,
and visualization expertise) to explore alternative
hypotheses.

Data analysis algorithms

Given the large scale that is typical of retrospective
data—both in terms of population sizes and the num-
ber of data features available per person—data analysis
algorithms have been widely used to support cohort
analyses tasks. They automatically process large col-
lections of population data to classify or segment a
population or to compute new derived features. For
example, similarity analysis can be used to identify a
cohort of similar patients given a target index patient,
which can then be used as the basis for decision sup-
port.4 Similarly, Ebadollahi et al.5 utilized similarity
analysis for near-term prognostics for physiological
data. Chattopadhyay et al.6 used similarity for risk
assessment. Huxley et al.7 estimate the relative risk of
fatal coronary heart disease associated with diabetes
by inverse variance and meta-analysis of 37 prospec-
tive cohort studies. Seid et al.8 adopted the method of
PedsQL 4.0 Generic Core Scales9 and other statistical
analysis methods such as multiple linear regression
analyses and conducted a 2-year prospective cohort
analysis. Other examples of analytics include predic-
tive models that generate new derived features (e.g.
disease-specific risk scores) after being trained from
large sets of population data.10

These algorithms allow for the efficient processing
of large amounts of data. However, they typically work
like a black box with users having little or no control
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over the analytical pipeline. The lack of user input
makes it impractical for exploratory analysis where
users need to explore alternative hypotheses.

Visual analytics techniques

To help capture user input and make the analysis pro-
cess more interactive, visual analytics techniques com-
bine visualization, data mining, and statistics with
interactive interfaces that allow the users to apply their
domain knowledge.11–13 Visual analytics can help
overcome limitations with the classical one-way data
analysis process by letting the user become directly
involved influencing the way data are processed.14 A
similar concept was also proposed in the field compu-
tational steering,15 which lets the user lead the explo-
ration of simulations, with prompts to direct the
simulation. All of these techniques allow the users to
apply their domain knowledge in the traditional auto-
matic analytical/computational process, and visualiza-
tions are used to provide immediate feedback to guide
the following steps. CAVA is designed similarly, allow-
ing the user to directly influence the inputs, control
parameters, and timing of execution for supported
data analysis computations.

A key element of any visual analytics system is
visualization. Interactive visualization techniques can
provide domain-expert users with intuitive data repre-
sentations that can be quickly understood, explored,
and manipulated. Complementing more traditional
charting methods (such as tables, bar charts, and his-
tograms), an enormous variety of sophisticated tech-
niques have emerged from the information
visualization community over the years. Many of these
designs can be effectively employed in a cohort analy-
sis context and our CAVA prototype includes compo-
nents that implement several well-known visual
metaphors. Given the nature of many cohort analyses,
two types of visualizations are often highly critical: (1)
hierarchical or multi-dimensional data visualizations
to segment based on complex sets of population
attributes16–21 and (2) temporal visualizations to navi-
gate events over time in populations’ longitudinal
data.22–29 For populations that include geographic
information, maps are also a powerful visual metaphor.

The prototype implementation of CAVA described
in this article supports several different visualization
types. For example, treemaps are used as a display for
hierarchical data30 and are coded to support selection
which can coordinate with other linked views.
Similarly, CAVA employs a temporal visualization view
that is a generalized extension of the Outflow tech-
nique.27,31,32 Recognizing that different types of
cohort analyses can require different sets of visualiza-
tion capabilities, CAVA’s design allows for the easy

integration of additional views without changes to the
underlying cohort analysis platform.

Another aspect of visual analytics research related
to CAVA is analytics provenance. Many projects have
explored techniques for capturing and modeling a
user’s analytical process history. For example, Jankun-
Kelly et al.33 introduced the P-Set model of visualiza-
tion exploration and a framework to encapsulate,
share, and analyze visual explorations. Perer and
Shneiderman34 designed a systematic yet flexible
framework that allows analysts to take exploratory
excursions while keeping track of overall progress. In
related work, Shrinivasan and Van Wijk35 presented an
information visualization framework that captures the
analytical reasoning process via interaction with multi-
ple views. The views are used for data visualization,
recording analysis artifacts, or representing the analy-
sis states. Gotz and Zhou36 characterized users’ visual
analytic activity at multiple levels of granularity and
then identified a critical level of abstraction, Actions,
that can be used to represent visual analytic activity
with a set of general but semantically meaningful beha-
vior types. CAVA also captures a user’s history and
exposes it through the user interface for inspection and
manipulation. CAVA’s history is modeled in terms of
its key artifacts: cohorts, views, and analytics.

Systems and applications

Recently, Rind et al.37 gave a survey of tools and sys-
tems in the health-care field and showed that effective
information visualization can facilitate analysis of elec-
tronic health records (EHRs) for patient treatment
and clinical research. A number of cohort-focused
visual analytics systems have been developed and
applied to specific types of applications. For example,
in the domain of health-care analytics, Steenwijk
et al.38 proposed a visual analysis framework for
cohort studies of heterogeneous data using mappers to
connect features across domains. Cao et al.39 designed
DICON, a tool that allows users to interactively view
and refine patient clusters. Gotz et al.40 extended
DICON and integrated it into a similarity-based clini-
cal decision intelligence system. Lins et al.41 developed
VisCareTrails, a system that captures patients’ medical
events and summarizes event paths. Chui et al.42

introduced a system for disease monitoring and bio-
surveillance that uses a multi-panel graph to integrate
temporality and demographics. Perer and Sun43 intro-
duced MatrixFlow that analyzes temporal patterns of
co-occurring clinical events and supports comparison
across cohorts. In all of these systems, however, the
analysis follows a pre-defined flow. Our work, in con-
trast, allows flexible, user-composed workflows that
combine analytics and visualization. CAVA builds
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upon the early work of Zhang et al.44 who described a
preliminary prototype for interactive cohort analysis.
In this article, we extend this approach and propose a
standardized model and platform for exploratory and
iterative cohort analysis workflows.

Finally, while we have focused on the health-care
domain as our motivating scenario, similar problems
have been explored in other domains. For instance,
Ferreira et al.45 built a system that supports the analy-
sis of spatiotemporal bird distribution models. Dou
et al.46 introduced ParallelTopics that dealt with large
document collections. Xu et al.47 presented a system
that can analyze large-scale digital collections for archi-
val purposes. Each of these addresses an application
domain featuring the analysis and exploration of col-
lections of entities. Therefore, our CAVA framework
could be extended to support these topics by develop-
ing an appropriate set of views and analytic compo-
nents. For example, to explore document collections,
an analytic component for Latent Dirichlet allocation
(LDA) topic modeling (as used in Dou et al.46) could
be developed.

System design

CAVA is designed to meet the key requirements out-
lined in our motivating application scenario. It allows
users to select, visualize, analyze, and refine cohorts
obtained from large population-oriented datasets.
Moreover, these steps can be performed iteratively as
part of complex ad hoc analytical workflows. This sec-
tion provides a detailed discussion of this design,
beginning with a discussion of CAVA’s three key arti-
facts: cohorts, analytics, and views. We then describe
how CAVA binds these artifacts together into an inte-
grated architecture. Finally, we discuss CAVA’s user
interface and the prototypical workflow that the sys-
tem supports. As concepts are presented, we adopt the
notations defined in Table 1 which we then use
throughout the remainder of this article.

Key artifacts

There are three key artifacts at the core of CAVA’s
design. First, CAVA’s primary data artifact is the
cohort which represents a collection of individuals
selected from an overall population. Cohorts are then
manipulated by two different types of operational arti-
facts: analytics and views.

Cohorts. A cohort is CAVA’s most important data con-
struct. We define a cohort Ci as a set of individual
members mz such that Ci = fmzg. In addition to its
membership, a cohort has global properties, such as a

label (i.e. a human-consumable name for display
through a user interface) and aggregate statistical sum-
maries of the underlying membership. Each member
mz has associated with it a feature vector, noted as~fmz

.
This feature vector contains the set of all information
known about the corresponding member.

For example, in the health-care domain described
in our motivating scenario, a cohort would represent a
set of patients. A potentially large number of features
may be associated with each member in the cohort,
such as a patient’s demographics (age, gender, etc.),
diagnoses, treatments, and lab results.

An important aspect of this definition is the poten-
tial for large variations between different cohort mem-
bers’ feature vectors. Unlike data that have been
carefully curated for prospective cohort studies, retro-
spective data can be sparse, irregular, and suffer from
many missing values. For example, consider the
health-care scenario. The many member patients in a
cohort are likely to have different sets of co-morbidities
and to have undergone a wide range of lab tests and
treatments. In addition, derived data for a given
patient—such as computed risk scores—may only be
available for portions of the population. In practice,
individual patients are not identical.

For these reasons, the data contained in~fmz
can vary

widely between mz 2 Ci. Based on this observation, we
define two additional global properties for a cohort:
(1) the inner feature set and (2) the outer feature set.
Adopting the semantics from SQL’s inner and outer
joins, the inner feature set, Fin

Ci
, is the set of features

that are present in all members of the cohort

Fin
Ci
=

\

mz2Ci

~fmz
ð1Þ

This is in contrast to the outer feature set, Fout
Ci

,
which represents the union of all features found at
least once in the cohort’s membership

Table 1. A summary of the notation used in this article.

Notation Description

Ci A cohort
mz An individual member of a cohort
~fmz The feature vector for member mz

Fin
Ci

The inner feature set for Ci

Fout
Ci

The outer feature set for Ci

Aj An analytic (a type of operational artifact)
Vk A view (a type of operational artifact)
~aj A vector of input parameters for

operational artifact j
~ak A vector of input parameters for

operational artifact k
Fpre

Aj
The prerequisite feature set for Aj

Fpre
Vk

The prerequisite feature set for Vk
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Fout
Ci

=
[

mz2Ci

~fmz ð2Þ

The sparsity typical of retrospective data corpora
means that Fin

Ci
is generally much smaller than Fout

Ci
for

a given cohort. This fact becomes important during
the cohort binding process described in section
‘‘Architecture overview.’’

During typical operation, CAVA maintains a collec-
tion of multiple cohorts. First, a special pre-defined
cohort, P, is used to represent the set of all members
in an overall population. For instance, P might contain
all patients in a cardiology department’s medical
record system. A number of other cohorts—such as a
group of elderly men or a group of patients at risk of
hospital readmission—are then defined as subsets of P
using the operational artifacts described later in this
section: analytics and views. In this way, P is the
superset for all CAVA cohorts.

Analytics. Analytics are the first of two distinct types
of operational artifacts in CAVA. Unlike cohorts,
which represent data, operational artifacts represent
components that manipulate data in some way, con-
verting an input cohort Ci into a newly modified out-
put cohort C0i.

An analytic, noted Aj , is a specific type of opera-
tional artifact which applies a computational algorithm
to Ci in order to produce the output result. A CAVA
system contains a collection of one or more analytic
components, each responsible for performing a distinct
analytical function. Along with an input cohort, many
analytic algorithms expose additional setting or control
parameters. Therefore, CAVA allows individual analy-
tic components Aj to require a custom vector of addi-
tional input parameters, noted as ~aj . Each Aj can have
its own specification for what values are required as
part of ~aj , which typically reflects an algorithm’s con-
trol parameters, such as thresholds or settings. Given
this formulation, we model analytic Aj as the function
defined in equation (3)

Aj(Ci,~aj)=C0i ð3Þ

Analytic components can modify cohorts in two
distinct ways. First, analytics can refine the membership
of a cohort by adding and/or removing members. For
example, an analytic might perform a similarity analy-
sis to grow a cohort by finding ‘‘more people like
these.’’ Analytics that refine membership may also,
indirectly, impact global properties of a cohort.
Second, analytics can refine the feature space for a
cohort by adding, removing, or updating features from
the cohort members’ feature vectors. Most typically,
such analytics compute new types of feature, expand-
ing Fin

Ci
. For example, an analytic in the health-care

domain could be developed to derive a body mass
index (BMI) score (BMI is calculated from a patient’s
height h (in meters) and weight w (in kilograms)48 as
follows: BMI =w=h2) for all patients in a cohort using
their corresponding height and weight measurements.

In the example above, computing BMI requires
access to height and weight measurements. This
demonstrates that some analytics may require that cer-
tain features be present in Fin

Ci
to function properly.

For example, the BMI analytic described above would
require that each member of the input cohort have
both height and weight. We refer to these required fea-
tures as the prerequisite feature set, which we note
as Fpre

Aj
.

CAVA supports two different types of analytic com-
ponents: (1) interactive analytics and (2) batch analy-
tics. Both interactive and batch analytics adhere to the
definition presented in equation (3). However, as
described in more detail in section ‘‘Architecture over-
view,’’ they are treated quite differently by the CAVA
platform.

An interactive analytic operates on an input cohort
synchronously. It executes immediately upon request
and blocks any further user interaction until it returns
C0i upon completion. In the user interface, this is
reflected with a progress bar indicator. Interactive ana-
lytics are used for relatively fast computations where
the time required for execution is sufficiently minimal
that the delay is acceptable within an interactive user
interface. For example, the BMI calculator described
above would be encapsulated as an interactive analytic
because the arithmetic calculations required to pro-
duce a BMI score (given the raw height and weight
values for all patients in a cohort) can be performed
very quickly.

In contrast, batch analytics operate asynchronously.
Designed for long-running calculations, batch analy-
tics work in the background and save resulting C0i
cohorts for subsequent analysis when users return to
see the results. This is in contrast to interactive analy-
tics which return their results immediately to a user.
This model allows users to launch long-running analy-
tics in the background while still continuing their
interactive analysis process.

For example, a batch analytic in the health-care sce-
nario might perform risk stratification for large popula-
tions using complex high-dimensional calculations that
cannot be performed at interactive rates for large input
cohorts. A user could initiate such a risk stratification
batch analysis on a group of interesting patients, then
immediately return to visually explore other aspects of
the cohort without waiting for the computation to
terminate.

The example above describes how users can initiate
batch analytic processes. However, batch analytics can
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also be executed automatically by the CAVA system
itself. As described in section ‘‘Typical CAVA work-
flow,’’ CAVA can run a set of batch analytics to boot-
strap the system with an initial set of system-generated
cohorts to serve as starting points for users’ interactive
analyses.

Views. The second type of operational artifact in
CAVA is the view, noted as Vk. Like analytics, views
are components that manipulate an input cohort Ci

and produce a new output cohort C0i for further analy-
sis. However, views do not rely primarily on computa-
tional algorithms to compute C0i. Instead, views are
visualization-based display components that rely on a
user’s interactions to modify Ci. In general, a CAVA
system contains a collection of views designed for vari-
ous purposes. Some views may be general in scope,
while others may be designed for a more narrow and
specific task.

As with analytic components, a view Vk can be initi-
alized with a vector of values ~ak which contains view-
specific input parameters. For example, ~ak could
include settings for color scales, layout options, data
transformations, or mappings to initialize configurable
axes. Given these input parameters and the input
cohort Ci, we define a view Vk as follows

Vk(Ci,~ak)=C0i ð4Þ

Using the inputs Ci and ~ak, views produce a graphical
depiction of Ci and allow users to interactively explore
the data. In particular, views provide users with visual
mechanisms to select subsets of the population to
apply filters. This allows users to interactively refine a
cohort, most commonly by removing members mz

from Ci that are no longer of interest with a combina-
tion of selections and filters. This use case is illustrated
in Figure 2.

For example, a demographic view might provide
visualizations of age, gender, and ethnicity

distributions for a given cohort. In addition, the view
could allow a user to interactively select subgroups for
filtering (e.g. selecting only females over the age of 50
years).

However, views are not limited to simple filtering.
Views can be designed to support more sophisticated
cohort manipulations such as annotation, which would
allow users to label selected subsets of patients with
additional features (e.g. as in Gotz et al.49). In this
way, views can be designed not only to narrow the
focus of an analysis to members of interest but also to
help expand Fout

Ci
based on discoveries made using a

visualization.
As with analytics, individual views can specify a pre-

requisite set of features in Fin
Ci

for the input cohort Ci

for the view to function properly. For example, the
demographic view described above might require that
each member of the input cohort have an age, gender,
and ethnicity. The prerequisite feature set for a view
Vk is noted Fpre

Vk
.

Finally, views produce output cohorts C0i that reflect
the manipulations performed within a view. Views sat-
isfy this requirement by providing an export capability
which is used to retrieve the current cohort from a view
at any given point in time. To enforce this requirement,
the export function is specified as part of CAVA’s
required application programming interface (API) for
view components. Therefore, from a functional per-
spective, view artifacts are identical to analytic artifacts
in that they both take a cohort as input (along with an
optional set of input parameters) and produce a new
cohort as output. This commonality is central to the
CAVA design.

Architecture overview

The CAVA architecture builds directly upon the three
design artifacts defined above. As illustrated in
Figure 3, two logical databases are used to store the
system’s data. The population database contains all

Figure 2. Both analytics and views are operational artifacts which manipulate a given cohort. Analytics (Aj) can be used
to computationally change a cohort’s membership and/or expand its inner feature set. In contrast, views (Vj) allow
manual interaction (e.g. visual filtering) to drive the cohort manipulation process. Most typically, views are used to
reduce a cohort while analytics expand a cohort.
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known information about the individual members of a
population. As new data about individuals are derived
(via either analytics or views), they are appended to
this database.

The second database stores cohort information.
Updates are made to the cohort database as new
cohorts get defined or as existing cohorts get refined
(i.e. changes in membership and/or global properties).
For each cohort, CAVA maintains a list of member ID
values (used as keys within the database schemas)
which allows for the joining of data across the two
databases.

Access to these data sources is provided by a data-
base controller. This component manages database
connections and provides a standard API to the under-
lying data. This API is then used by an application
controller for all data access and manipulation. This
approach allows the vast majority of the system to
remain database agnostic, making it simpler to con-
nect to alternative data sources for new applications or
deployment environments.

The application controller serves as the central
management component within the CAVA architec-
ture. It connects and coordinates the various compo-
nents of the platform, and it ties these elements to the
user interfaces to form a single integrated system. We
describe the coordination process in more detail in
section ‘‘Typical CAVA workflow.’’

Included within the resource pool managed by the
application controller are two libraries of plug-ins, one
for analytics and one for views. CAVA defines generic
analytic APIs and view APIs that must be implemen-
ted by each instance of these components. The APIs

include callbacks to manage lifecycle events (e.g. the
completion of an analytic process or the rendering of a
view through the user interface) and data requirements
(e.g. gathering aj for a given Aj). They also ensure that
all operational artifacts adhere to the contracts defined
in equations (3) and (4), including the ability to export
an output cohort. Because the same APIs are shared
across all plug-ins, the central application controller
can be defined to work generically, agnostic to the spe-
cifics of the underlying visualization or data analysis
algorithms deployed within the system.

Configuration files allow the controller to discover
which analytic and view components are deployed
within the system. Then, at runtime, the controller
orchestrates interactions between the deployed com-
ponents using the generic APIs. Importantly, this
approach allows new analysis or visualization compo-
nents to be deployed dynamically without making any
changes to the rest of the CAVA system. In practice,
this is an important architectural detail because it
allows for use-case specific CAVA plug-ins (e.g.
cardiology-centric vs oncology-centric risk assessment
analytics) to be deployed in different installations with-
out having multiple builds of the overall platform.

One critical responsibility of the application con-
troller is cohort binding. This is the process by which
the controller initiates execution for either an analytic
or a view by pairing it with an input cohort. During
the binding process, the controller checks to ensure
that Fpre

Aj
or Fpre

Vk
(for analytics and views, respectively)

are subsets of Fin
Ci

for the given input cohort Ci. The
controller aborts the binding and return an error if the
prerequisite test fails. If the prerequisite test succeeds,
then the application controller prompts the user inter-
face to gather any required input parameters aj (or ak

for views). Once these binding activities have been
successfully completed, control is passed to the appro-
priate analytic or view for execution.

User interface

A common theme to the CAVA requirements outlined
in section ‘‘Motivating scenario in health-care domain’’
is ease of use. Users in our motivating scenario must
be able to interactively perform both analytics and
visualization tasks flexibly, iteratively, and without
requiring intervention from outside technology
experts. The user interface for CAVA is designed to
satisfy these requirements.

The interface consists of six panels as shown in
Figure 4. The left sidebar contains three panels, one
for each of the CAVA artifact types: cohorts, views,
and analytics. The cohort panel displays a list of
cohorts available for further study. The list contains
both system-generated cohorts and cohorts manually

Figure 3. The high-level architecture adopted by CAVA.
Two logical databases contain population and cohort data,
while a database controller manages access to these
resources. The application controller provides the runtime
logic to (a) connect the libraries of analytic and view
components with data sources and (b) manage user
interaction.
CAVA: Cohort Analysis via Visual Analytics.
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defined and saved by a user. These cohorts serve as
starting points for user analysis tasks. The view panel
displays several icons, one for each of the views avail-
able to visualize a cohort. Similarly, the analytics panel
lists the analytic components that can be used to pro-
cess a cohort. To apply any operational artifact on a
specific cohort, a user can simply select the cohort of
interest from the cohort panel, drag it to the view or
analytic panel, and drop it onto the requested artifact.
This simple interaction triggers the binding process
described in section ‘‘Architecture overview.’’

To the right of the artifact panel, the visualization
panel is the largest and most prominent section of the
user interface. Located in the center of the screen, this
area is used to display the currently active view and
allows users to interact directly with the visual repre-
sentation of the cohort data. As a minimum, users can
select subsets of data and apply filters through this
panel. The availability of additional interactive fea-
tures, such as annotation, depends on the view.

The remainder of the user interface falls to the right
of the visualization canvas. It includes a details panel
to show additional information about the cohort

currently being visualized and a history panel that pro-
vides an interactive representation of a user’s visual
analysis history. The history is organized as a tree with
buttons that allow revisitation of prior analysis steps.
Mousing over buttons provides additional details
about the corresponding step such as applied filter
parameters. The granularity of the history maps to the
sequence of operational artifacts applied to the initial
cohort (i.e. the chain of analytics and views used to
manipulate the source cohort).

Typical CAVA workflow

To better illustrate how users typically navigate the
CAVA interface, we describe a typical workflow as illu-
strated in Figure 5. The very first step in a CAVA anal-
ysis happens automatically prior to any user
interaction. A set of batch analytics—pre-configured
as part of the CAVA system’s deployment settings—
process the entirety of the population database. The
result of this process is a set of system-generated
cohorts which, along with the default cohort P, can
serve as starting points for users’ interactive analyses.

Figure 4. The CAVA user interfaces consist of six panels. The left sidebar contains lists of the three key artifacts in the
system: (a) cohorts, (b) views, and (c) analytics. When a user binds a cohort to a specific view via drag-and-drop
interaction, the result is displayed on (d) the visualization canvas. The (e) details panel shows more information about
the visualized cohort, while (f) the history panel allows users to revisit previous steps.
CAVA: Cohort Analysis via Visual Analytics.
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These cohorts are stored in the cohort database. For
instance, the risk stratification analytic mentioned in
section ‘‘Analytics’’ could be pre-configured to provide
CAVA users with an initial set of high-risk patient
cohorts for further investigation.

Following the batch-analytics-based initialization
stage, the remaining workflow in CAVA is driven by
user interaction. After first logging into the CAVA sys-
tem, a user can browse the cohort panel to see a list of
population groups that are available for visual analysis.
At first, these will be the cohorts generated during the
initialization round of batch analytics. Over time, the
list grows to include manually crafted cohorts created
via interaction with the CAVA system.

From here, a user can perform one of two opera-
tions, both triggered by drag-and-drop manipulation
of an entry in the cohort panel. First, a cohort can be
dropped onto an item in the analytics panel. This
would perform additional computation on the set of
patients and store the results in the user-defined sec-
tion of the cohort panel. (All analytics are treated as
batch analytics when the input cohort is taken from
the cohort panel. This is because there is no active
view to display the results interactively.) Alternatively,
and most common, users can drag a cohort to one of
the visualization icons in the view panel. This would
automatically bind the cohort to the visualization,
which checks the view prerequisites Fpre

Vk
against the

cohort’s Fin
Ci

, queries the database to gather data for
the cohort members, and renders the interactive view
on the visualization canvas. From a rendered view,
users can interactively explore the data in various ways.
The exact set of interactive capabilities available to the
user (e.g. brushing, pan/zoom, annotation) depends
on the specific view that was requested. However, all
views allow users to select subsets of a cohort’s mem-
bership and apply filters.

In addition, users can perform one of three subse-
quent steps. First, users can save a modified cohort so

that it can be revisited at a later time. In response, the
newly saved cohort appears in the user-defined section
of the cohort panel. Second, users can pivot from one
type of visualization to another. This allows users to
quickly navigate between multiple visualizations, view-
ing and refining the cohort throughout the process.
Finally, users can request that a new round of analytics
be performed on the cohort. In response, CAVA first
gathers any needed input parameters that the analytic
algorithm might require (typically via a dialog box). It
then automatically launches execution of the requested
analytic module. For interactive analytics, the results
are automatically bound to the currently active view
which displays the newly created cohort. For longer
running batch analytics, the results are persisted to the
cohort database for asynchronous review by the user.
Throughout this process, the history panel records the
user’s analysis process (both views and analytics)
which lets the user review his/her past steps and com-
pare cohorts from various stages of the analysis.

Prototype implementation

Based on the design proposed above, we have devel-
oped a prototype CAVA implementation targeting the
health-care domain. Our prototype connects to a pop-
ulation database containing electronic medical data for
a set of cardiac patients. For each patient, the dataset
contains both demographic information and longitudi-
nal medical data. The medical portion of the database
contains time-stamped records of diagnoses, labs,
medications, and procedures. This section describes
the prototype CAVA platform implementation details
and lists the set of available views and analytics.

CAVA platform implementation details

The CAVA prototype is a web-based system built
using Servlet technology which can be hosted using

Figure 5. CAVA allows users to intermix analytics and visualization-based cohort manipulations as part of an ad hoc
exploratory analysis process. A set of batch analytics process the population data to create (a) an initial set of cohorts.
Those cohorts can be (b) bound to views via drag-and-drop interaction. From a view, users can either (c) save modified
cohorts, (d) request additional batch analytics that run in the background, or (e) trigger interactive analytics for on-
demand processing which automatically update the active view.
CAVA: Cohort Analysis via Visual Analytics.

Zhang et al. 11

 by Adam Perer on October 27, 2014ivi.sagepub.comDownloaded from 



the open-source Apache Tomcat server or commercial
alternatives (i.e. IBM WebSphere). Server-side appli-
cation logic is developed primarily in Java, with small
portions authored using JavaServer Pages (JSP) and
SQL. Client-side features have been developed using
Hypertext Markup Language (HTML), Cascading
Style Sheets (CSS), the Dojo toolkit for user interface
widgets, and basic content elements. The Scalable
Vector Graphics (SVG)-based library D350 is used for
most of the visualization rendering, though some
visualization components use a custom JavaScript
library built on top of HTML5’s Canvas element.

The data model in CAVA is based on the Universal
Feature Model (UFM) proposed in Intelligent Care
Delivery Analytics (ICDA),51 a large-scale batch-
oriented health-care analytics platform. The data are
stored in a relational database (e.g. IBM’s DB2) using
a standard data model that is optimized for the sparse
and high-dimensional nature of electronic medical
data. The UFM data model was designed to be perfor-
mant for large-scale population analytics and works
well for CAVA’s typical workload. As a preprocessing
step, the source medical data were transformed from
their original schemas loaded into our UFM-based
population database.

In addition to the data model, the ICDA platform
provides a powerful runtime environment for data
analytics modules. A plug-in oriented framework
allows for the quick deployment of additional analy-
tics, and the flexible APIs allow for modules developed
in a variety of languages such as Java and Python.
However, as originally proposed, ICDA was designed
to support only batch analytics. We have therefore
extended the ICDA runtime to support interactive
analytics as required by the CAVA application control-
ler shown in Figure 3.

Available views and analytics

Building upon this foundation, we developed a number
of views and analytics specifically targeted to the
health-care domain. More specifically, the prototype
system includes, among others, a demographic over-
view (showing distributions for age, gender, and diag-
noses), a table view to show detailed information about
a set of patients, a flow diagram based on the Outflow
visualization27 to show how the symptoms progress
along the time, a histogram-based treatment compari-
son view that uses small multiples to compare patient
subgroups, and a radial chart designed to show hier-
archical data such as different medical coding systems.

The CAVA prototype also includes a number of ana-
lytics. Batch analytics include a demographic module
(e.g. to define cohorts for men vs women) and a risk
stratification module (to identify various groups of

patients at risk of hospitalization based on predictive
modeling techniques). Together with the overall popula-
tion cohort P, the cohorts generated by these analytics
provide the initial set of system-generated cohorts from
which a user can choose when starting a new analysis.
On-demand analytics in our prototype include a patient
similarity component,5 a utilization analysis compo-
nent,52 and a heart failure risk assessment component.10

The selection of views and analytics described
above were chosen to match the initial needs of our
target users. As those needs grow, we expect the
library of available view, and analytics components will
expand as well. Moreover, we note that while the main
focus of our prototype is the visual analysis of patient
cohorts, a CAVA system can be connected to views of
single patients where appropriate. For example, the
table view could be extended to allow users to see
more information about individual patients or linked
to external tools such as traditional EMR systems.

Use cases

The CAVA platform enables a wide range of cohort
analysis workflows. To highlight some of the benefits
of our approach, we present two CAVA use cases from
the health-care domain. Taken together, these use
cases show how CAVA supports our motivating sce-
nario and addresses the five requirements identified in
section ‘‘Motivating scenario in health-care domain.’’
For each use case, we begin with a description of the
user’s analysis task. We then describe the step-by-step
analysis process by which CAVA can help the user
complete their investigation. Each use case is illu-
strated with a figure showing screenshots of CAVA at
various stages of the analysis.

Use case: iterative search

In this use case, we follow a clinician who has recently
become aware of a new preventive technique that has
been shown to help delay or prevent certain types of
patients from developing heart disease. (The ‘‘new pre-
ventive technique’’ mentioned in this scenario is used
to demonstrate a hypothetical scenario for CAVA and
is not intended to suggest any novel medical insights.
Moreover, this article makes no claims about the exis-
tence or efficacy of any treatments—new or old—for
any disease. Such claims are beyond the scope of this
article and would require rigorous clinical evaluations
which are not part of this article.) In particular, the
treatment has been studied most in male hypertensive
patients between 60 and 80 years of age. Due to lim-
ited resources and potential side effects, the clinician
wants to focus this new treatment regimen on only
those patients who are both (a) at high risk of
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developing the disease and (b) best fit the selection cri-
teria for which the treatment is most effective. The
clinician uses CAVA to find a cohort of candidates for
the treatment following a usage pattern that we call
iterative search.

To start, the physician selects a high-risk group
from the cohort panel which has been generated by a
background risk stratification analytic. The user then
drags and drops the cohort onto the demographic
overview visualization icon. This results in the visuali-
zation shown in Figure 6(a), which displays linked
views of age, gender, and diagnosis distributions. The
user interactively selects various elements in the visua-
lizations to explore how these three demographic cri-
teria are correlated.

Next, the clinician interacts with the visualization to
select and filter the age group in which the treatment
has been studied: 60–80 years of age. By selecting the
age range in the histogram and clicking the filter but-
ton, the user modifies the cohort to exclude those out-
side the specified range. The clinician then selects the
men in the cohort and applies an additional filter. The
result is shown in Figure 6(b). As a result of the filters,
the initial cohort has been reduced to a group roughly
one-third in size. However, the clinician presumes that
there are likely additional patients—missing from the
current cohort—who are clinically similar to the visua-
lized patients and could benefit from the treatment
even if they do not strictly meet the inclusion criteria.
Therefore, the clinician decides to search for similar
patients by dragging the current cohort from the active
view to the Patient Similarity entry in the analytic
panel. In response, CAVA binds the visualized cohort
to the analytic and presents the user with a dialog box
to gather the needed input parameters. In particular,
the clinician indicates that she wants to retrieve enough
similar patients to double the size of the cohort. After
clicking OK, CAVA runs the analytic and updates the
visualization with the newly expanded cohort.

The visualization now shows the additional similar
patients, but the clinician is still not finished. Because
the treatment was designed for patients with hyperten-
sion, she selects the hypertension subgroup in the
visualization (as shown in Figure 6(c)) and applies one
last filter. The clinician has now used a combination
of ad hoc filters and analytics to identify an initial set
of candidate patients to target with the newly available
treatment. Moreover, they have accomplished this
without the help of a technology team to write SQL
queries, run analytics, or produce reports.

Use case: on-demand analytics

In this use case, a clinician has been told by her medi-
cal director that an unusually high number of cardiac

patients with hypertension are ending up in the hospi-
tal with a specific set of symptoms. Given the increased
danger to patients and the expense associated with a
hospitalization, the clinician wants to identify a cohort
of at-risk patients who would most benefit from a
proactive care management plan designed to avoid
hospitalization.

The clinician begins by dragging the All Patients
cohort to the demographics overview visualization
icon. This results in a visualization summarizing age,
gender, and diagnosis distribution for the full popula-
tion of patients. She immediately selects hypertension
in the diagnosis treemap and applies a filter to focus
on the right subgroup of patients. The result is shown
in Figure 7(a).

However, the clinician still needs to focus her analy-
sis on only those most at risk of hospitalization. She
therefore drags the modified cohort from the visualiza-
tion panel to the Hospitalization Risk analytic. This
causes CAVA to bind the selected analytic component
to the user-defined group of hypertensive patients and
initiate the scoring process. The cohort’s patients are
then each assigned a hospitalization risk score that pre-
dicts the likelihood of hospitalization based on each
patient’s unique medical history. When the on-demand
analytic returns, this new feature is appended to the
cohort’s inner feature set (Fin

Ci
). However, because the

currently active view (the demographic overview) does
not display this attribute, no visible changes appear in
the visualization.

To visualize both the newly calculated risk assess-
ments along with variations in symptom progression
within the current cohort, the clinician pivots to the
Outflow view27 via the same drag-and-drop interaction
used to launch the hospitalization risk analytic. This
view, shown in Figure 7(b), illustrates how different
symptom progression pathways lead to different hospi-
talization risk assessments.

The clinician finds the location in the view that rep-
resents the set of symptoms reported by the medical
director and sees that it does indeed correspond to a
high risk of hospitalization as predicted by the data-
driven analytic component. However, the clinician also
sees that this view does not tell the full story. Several
related paths with similarly high-risk scores branch off
earlier in time with somewhat different symptom pro-
gressions. The clinician therefore selects an earlier
branch in the Outflow diagram and applies a filter to
obtain this larger subgroup of high-risk patients. Now
that this set of at-risk patients has been identified, the
clinician pivots again by dragging the cohort to the
table view (Figure 7(c)) to get a detailed list of patient
names and ID numbers. As in the first use case, the
clinician has succeeded without relying on a team of
technologists at each step.
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Figure 6. CAVA supports an iterative search process as described in the first use case of section ‘‘Use cases.’’ This
sequence shows several snapshots from the scenario where a clinician expands and refines an initial high-risk cohort
using a mix of visual filters and patient similarity analytics. The end result is a targeted cohort of candidate patients for a
new treatment regimen. (a) The sequence begins with a cohort overview showing age, gender, and diagnosis
distributions. (b) Interactive visual filters are used to focus the analysis to narrower cohort. (c) Because the filtered
group is too small, patient similarity analytics are requested to expand the cohort by retrieving additional clinically
similar patients. The newly retrieved patients are visually integrated into the display for further analysis.
CAVA: Cohort Analysis via Visual Analytics.
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Figure 7. CAVA supports on-demand analytics as described in the second use case of section ‘‘Use cases.’’ This set of
screenshots shows a user taking advantage of an interactive hospitalization risk analytic to expand the set of available
features associated with her cohort. This allows her to filter down to patients who are evolving along high-risk clinical
pathways. (a) The sequence begins with a cohort overview showing age, gender, and diagnosis distributions. (b) After
applying filters to select a cohort of interest, the user switches to a temporal visualization to identify a high-risk patient
pathway. (c) Finally, the user switches to a tabular view to retrieve detailed individual patient information.
CAVA: Cohort Analysis via Visual Analytics.

Zhang et al. 15

 by Adam Perer on October 27, 2014ivi.sagepub.comDownloaded from 



Domain-expert evaluation

To evaluate our approach, we shared the CAVA system
with an emergency room physician with over 15 years
of experience practicing medicine and 20 years as a
medical executive. His history with both bedside care
and health-care management gives him valuable per-
spective regarding individual patient care and popula-
tion management.

The doctor spent roughly 1 h reviewing our CAVA
prototype applied to a population of over 32,000 car-
diac patients. The dataset analyzed with CAVA con-
tains both demographic and longitudinal data
extracted from the EMR system of a US-based care
provider. The patient data were de-identified to pre-
serve patient privacy, but were otherwise used as
stored within the EMR. The data therefore contain
real-world distributions and challenges with respect to
noise, missing data, and potential bias.

After examining the patient population through the
CAVA interface, the doctor was interviewed about his
experience. During the interview, he was asked to
comment about both (1) the design and usability of
the system from the domain expert’s perspective and
(b) the applicability of the CAVA system to problems
faced by major health-care organizations.

Usability and design

Overall, the doctor found CAVA to be ‘‘pretty intui-
tive’’ and ‘‘very useful.’’ He found the ability to manip-
ulate cohorts by dragging and dropping them between
analytics and views interchangeably valuable, stating
that it provides ‘‘speed and validation in a hurry.’’
When asked to provide more detail, he respond by say-
ing that ‘‘You can picture someone sitting down over a
couple of days with these tools’’ to complete a detailed
set of population studies. He contrasted this to existing
workflows using spreadsheets and charting capabilities
as currently used, which would require ‘‘two weeks of
analysis at a minimum’’ to answer some basic ques-
tions. He described it as a much more manual process
which would benefit from the ease-of-use and compu-
tational power in CAVA. ‘‘I think people will be very
very impressed at the easy of use factor compared to
what they are doing.’’

One area where he suggested improvements is in
the integration of more statistical capabilities within
the views. In particular, when discussing the patient
similarity analytics and their ability to expand cohorts,
he asked ‘‘how do you know if there are not enough
patients?’’ This implies that quantitative statistical
metrics about a cohort should be available to compli-
ment the graphical views. As currently designed, the
CAVA framework can easily support such statistics as

integrated pieces of an individual view. However, the
general nature of this requirement suggests that build-
ing statistical capabilities directly into the representa-
tion of a cohort would be an interesting extension to
the existing CAVA design.

Applicability to health-care challenges

In terms of the applicability of CAVA to health-care
challenges, the doctor was generally very positive.
When describing how new medical procedures or
practices are discovered, he pointed out that ‘‘some-
body had the idea that doing things a little differently
might help a different group of patients. [CAVA is] a
tool to help you figure that out’’ because it allows you
to quickly and easily experiment with analyses on dif-
ferent subgroups.

The primary area where the doctor suggested
potential problems for medical use cases was the lim-
ited amount of patient detail provided even in CAVA’s
table view. He suggested that after deriving a cohort of
interest, clinicians will need more than just a summary
of diagnoses and basic demographics. ‘‘All of this
makes sense, except for the details’’ of the patients in
the table. ‘‘That’s useful only up to a point . This is
where you tie back to the unstructured data’’ such as
discharge summaries and case summaries. The ‘‘narra-
tive unstructured data will interest physicians more
than just looking at the table.’’

In terms of the workflow that CAVA supports, he
called it a great match for how things are done in prac-
tice. He is planning a study with a collaborator regard-
ing dietary changes in different patient cohorts and
said ‘‘this would be perfect.’’ Describing how he would
use CAVA, he stated,

Within the initial working cohort, you identify a sub-
cohort of interest but that may be too small. So you go
back to the original dataset and find more people like this
to fill out the dataset [with similarity analytics] . That’s
what happens in the real world.

He went on to say that ‘‘tools to do that and make it
happen like this [snaps his fingers] is very useful . I’d
love to show this to [my collaborator], she’ll go nuts.’’

When asked to comment on the benefits of having
the ability to run analytics on demand over a given
cohort of patients, the doctor recounted a story from
his medical training. Patients were arriving at the hos-
pital with meningitis and seizures. ‘‘I saw the first per-
son I ever saw die,’’ in part because the ‘‘doctors did
not recognize what was happening’’ soon enough.
They were looking at data manually, individually, one
patient at a time. He felt that when doctors see a trend,
a tool like CAVA could let them quickly discover what
a group of patients have in common.
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Conclusion and future work

This article presented CAVA, a platform for Cohort
Analysis via Visual Analytics. CAVA is designed to help
domain experts work more independently and more
quickly when performing retrospective cohort studies.
To motivate our work, we began with a review of a
sample scenario from the health-care domain where
analysts need to manipulate and explore groups of
patients and their associated data to derive insights.
Using this example application, we then distilled a set
of five important requirements that drove our design
decisions when developing the CAVA platform. These
include (1) simple cohort definition, (2) flexible visua-
lization, (3) flexible analysis, (4) cohort refinement
and expansion, and (5) iterative analysis capabilities.

We then presented the design of the CAVA platform
itself. The proposed architecture achieves each of the
five identified requirements through a design centered
around three primary types of artifacts. Cohorts are
the primary data artifact, representing a group of indi-
viduals and their associated attributes. Cohorts are
then manipulated through two different types of
manipulations: analytics and views. CAVA treats both
of these types of operational artifacts as equivalent in
terms of their abstract functionality. More specifically,
both analytics and views process an input cohort and,
in response to input parameters and/or user interac-
tion, produce a new output cohort. Given this com-
mon formulation, CAVA allows users to chain together
arbitrary sequences of visual and analytical cohort
manipulations via its drag-and-drop user interaction
model. In addition, we described the typical CAVA
workflow and presented the details of our initial proto-
type implementation. Then, we presented two use
cases from the health-care domain that show the types
of analyses made possible by the CAVA platform.
Finally, we conducted a user study to justify the design
and usability of our approach. Results showed that our
framework met the domain requirements and was
helpful to address specific health-care challenges.

While the provided use cases show that CAVA can
support a range of analysis tasks, many topics remain
for future work. First, a comprehensive user evaluation
is essential. We are currently working with domain
experts to gather initial feedback on our prototype sys-
tem and plan to conduct more formal user studies as
our prototype evolves. Second, we are working to
expand the set of analytics and views available to users.
This will help make a wider range of analyses possible
using CAVA. Finally, we are looking at ways to expand
the functional model we use to represent analytics and
views. For example, many cohort study tasks involve
the comparison of multiple subgroups. Currently, this
is handled via sub-grouping that is performed within a

given analytic or view. However, allowing cohorts and
views to work with a set of cohorts as input and output
parameters (rather than the current single cohort for-
mulation) can enable more powerful workflows.
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