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Abstract—The growing volume and variety of data presents both opportunities and challenges for visual analytics. Addressing these
challenges is needed for big data to provide valuable insights and novel solutions for business, security, social media, and healthcare.
In the case of temporal event sequence analytics it is the number of events in the data and variety of temporal sequence patterns that
challenges users of visual analytic tools. This paper describes 15 strategies for sharpening analytic focus that analysts can use to
reduce the data volume and pattern variety. Four groups of strategies are proposed: (1) extraction strategies, (2) temporal folding, (3)
pattern simplification strategies, and (4) iterative strategies. For each strategy, we provide examples of the use and impact of this
strategy on volume and/or variety. Examples are selected from 20 case studies gathered from either our own work, the literature, or
based on email interviews with individuals who conducted the analyses and developers who observed analysts using the tools. Finally,
we discuss how these strategies might be combined and report on the feedback from 10 senior event sequence analysts.

Index Terms—Big data, temporal data, temporal event sequences, workflow, visual analytics, visualization, analytic focus.
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1 INTRODUCTION

THE growing volume and variety of data presents both
opportunities and challenges for visual analytics [62].

While big data provide valuable insights and novel solu-
tions for business, security, social media, and healthcare, it
also presents challenges due to two of its defining charac-
teristics – volume and variety [68]. To obtain cleaner and
more structured data, applications have been developed to
assist in the data cleaning and wrangling process [4], [28].
Now, researchers are exploring ways to reduce the data
volume and variety so as to sharpen the analytic focus.
Visual analytics processes are likely to be more rapid when
data volume is reduced and patterns are likely to be more
discoverable when data variety is trimmed.

The analytic focusing problem is also being addressed in
other fields such as knowledge discovery and sensemaking,
but this paper emphasizes temporal event sequences, where
point and interval events are organized into records. For
example, in healthcare, point events may represent doctor
visits or tests while interval events may represent a week-
long hospitalization or taking a medication for 6 months. A
patient record can be represented as a sequence of events,
each event being of a particular event category. Descriptive
information may be carried in record attributes (e.g. the
gender of the patient), and event attributes (e.g. the name
of the physician who placed the order).

A growing number of visual analytics and statistical
tools have been built for temporal event sequences. These

• Fan Du, Ben Shneiderman, and Sana Malik are with the Department of
Computer Science and the Human-Computer Interaction Lab, University
of Maryland. E-mails: {fan,ben,maliks}@cs.umd.edu.

• Catherine Plaisant is with UMIACS and the Human-Computer Interac-
tion Lab, University of Maryland. E-mail: plaisant@cs.umd.edu.

• Adam Perer is with IBM T.J. Watson Research Center. E-mail:
adam.perer@us.ibm.com.

tools often have difficulty in dealing with the growing
volume and variety of data:

• Volume of data: a dataset may consist of millions
of records and hundreds of millions of events, which
makes it hard to load and may result in long interactive
latency during exploration.

• Variety of patterns: a single record may contain thou-
sands or millions of events that fall into thousands of
different event categories. Even in smaller datasets the
sequential patterns of most records are unique and this
variety makes it difficult to generate an overview or to
reveal common patterns and anomalies. This definition
of pattern variety complements the traditional defini-
tion of variety in big data which refers to the variety of
data sources (structured, unstructured, semistructured).

While it is useful to have awareness of the data vari-
ety, analysts need useful ways of sharpening the analytic
focus, leading to useful visualizations of global patterns and
anomalies of interest. Just as camera images need to be in
focus on objects or faces of interest and telescopes are best
when tuned to spectral ranges (visual, ultraviolet, radio, x-
ray, etc.), so too analytic tools will be most effective if users
can focus their attention. The idea of an analytic pipeline or
workflow is well established in mature application domains
such as pharmaceutical drug discovery or NASA’s remote
sensing data analysis, but visual analytics in general and
the analysis of temporal event sequences in particular are
just beginning to have such workflows.

While it is useful to provide a comprehensive overview
of the data at the start, analysts need ways to sharpen the
analytic focus and gain answers to their research questions.
Achieving this goal requires data analytic tools to (1) pro-
duce effective visualization of global patterns and anomalies
of interest, and (2) keep visualizations simple with only
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necessary information.
This paper describes 15 strategies for sharpening analytic

focus that analysts can use to control the data volume and
pattern variety. It refines and expands on a set of 10 strate-
gies proposed in a short article [56]. In addition, the paper
includes numerous examples of the use of those strategies,
selected from 20 case studies, and illustrates how new tech-
nologies and user interfaces can support these strategies.
After describing the individual strategies and when they
were used during the analysis process, we discuss how
analysts often iterate over multiple strategies and report
on three longer case studies in greater detail. Finally, we
summarize the feedback of 10 event sequence analysts who
reviewed the list of strategies and propose a basic workflow
for applying the strategies.

2 RELATED WORK

This section discusses applications in the related domains
of data cleaning and wrangling, knowledge discovery and
sensemaking, and temporal event sequence analysis. It also
summarizes measures for data volume and pattern variety.

2.1 Data Cleaning and Wrangling
Real-world data are often challenging with respect to vol-
ume and variety. To obtain cleaner and more structured
data, many applications have been developed to assist in
the data cleaning and wrangling process [4], [23], [28], [50],
[51]. Particularly, Gschwandtner et al. proposed a taxon-
omy [26] for dirty time-oriented data and developed a clean-
ing tool [25] targeting its special characteristics. Wrangling
tools have also been built for the manipulation of time-
series data such as transforming continuous numeric data
into temporal event sequences [10], [19], [32], [43]. While
cleaning and wrangling fix essential problems in the data
(such as correcting erroneous values or integrating multiple
data sources [27]), we assume in this paper that the data
are ready for exploration, and discuss the next step of
sharpening the analytic focus by reducing the data volume
and pattern variety.

2.2 Data Focusing
Data focusing has been described in the field of knowledge
discovery and sensemaking, where focusing techniques are
employed to reduce the data volume by extracting sub-
sets of data [52]. While statistical and machine learning
algorithms are designed to handle huge data volumes,
they may achieve even better results on subsets than on
the entire data [5]. Instance and feature selection are two
important tasks for data focusing in knowledge discovery
and sensemaking, targeted at reducing the number of tuples
and attributes, respectively. A unified instance selection
framework has been proposed and evaluated, which creates
a focused sample of the entire data by selecting represen-
tative prototypes from groups of similar tuples [35], [52],
[53]. The goal of feature selection is to choose a subset of
features to optimize the feature space according to certain
criteria. Motoda and Liu summarized four groups of ma-
jor feature selection algorithms [44]. These data focusing
techniques are related to some of our extraction strategies.

Fig. 1. The interface of EventFlow [41]. In the aggregated overview,
the horizontal axis represents time and the vertical axis represents the
number of records. Each row shows the event sequence of a record
while multiple sequences with similar temporal patterns are visually
combined and encoded as color bars.

However, besides records and features (event categories),
event sequences also contain patterns of ordered temporal
events, which need to be handled particularly in order to
reduce data variety. This paper emphasizes temporal event
sequence analysis as opposed to multidimensional data and
provides a more diverse set of analytic focusing strategies.

2.3 Applications of Analytic Focusing Strategies
Analytic focusing strategies have been implemented in
many temporal event sequence analysis tools. For exam-
ple, EventFlow [41] visualizes a large number of event
sequences by visually combining records with similar tem-
poral patterns into an aggregated overview (Figure 1). The
aggregation is more effective when the number of unique
complete sequences is controlled. EventFlow includes fea-
tures that allow flexible filter-based and substitution-based
strategies for data simplification and analytic focusing [42].
DecisionFlow [24] produces simplified visualizations by
aggregating event episodes based on user queries. This
goal-driven analytic focusing strategy enables it to handle
large numbers of event sequences and event categories.
Frequence [47] detects and visualizes frequent temporal
patterns at different levels of detail to reduce the amount
of data that need to be focused on. Outflow [63] presents a
hierarchical clustering approach to aggregate similar patient
records to reduce pattern variety. Scribe Radar [64] targets
large-scale user activity data and employs extraction and
temporal windowing strategies to produce focused visu-
alizations based on analytical goals. Examples of the use
of analytic focusing strategies can also be found in other
temporal event sequence analysis tools [6], [14], [31], [60].

Interactions play an essential role in supporting these
analytic focusing activities, which helps analysts specify
the strategies to apply and fine tune the parameters after
inspecting the effects. For example, in the light of the generic
interaction frameworks [7], [65], “filter” or “query” interac-
tions can be used for extracting records of interest [24], “re-
configure” interactions can support splitting long streams of
event sequences into periodic units and rearranging them to
reveal cyclic patterns [42], [47], and “abstract” interactions
can aggregate detailed patterns or event categories into a
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high-level overview [47], [64]. Showing results in a timely
manner is critical for maintaining users’ performance [36]
but becomes difficult as the data volume grows. To address
this issue, we introduce two iterative strategies to guide
users starting from small and scaling up iteratively.

2.4 Measuring Volume and Variety

We separate the measures of volume and variety. Users of
relational databases measure data volume by their size, usu-
ally in bytes, number of rows, or number of columns [3]. For
temporal event sequences, the relational table approach is a
poor fit, so visual analytic tools define their own data stor-
age formats, invalidating traditional metrics. Since records
and events are the basic elements of event sequences, a
reasonable method to measure the volume of temporal
event sequence data is by number of records and events.

Users of visualization tools measure the visual complex-
ity by the number of distinct elements displayed on the
screen [17]. For example, the number of dots in a scatterplot,
the number of bars in a bar chart, and the number of nodes
or links in a node-link diagram. EventFlow researchers mea-
sured the visual complexity of temporal event sequences by
the number and average height of the aggregated chunks
on the display [42]. These visual complexity metrics re-
flect the variety of the underlying data but are specific to
the application. In this paper we will use a more general
tool-independent metric for the variety of temporal event
sequence data: the number of unique complete sequences,
which indicates the number of patterns in the temporal
event sequences and decreases as the data is simplified. We
believe that meaningful insights are more likely to be found
if data analysts can reduce the variety of patterns based on
their analytical goals.

3 A TAXONOMY OF ANALYTIC FOCUSING STRATE-
GIES

This taxonomy of analytic focusing strategies for temporal
event sequences is based on (1) the authors’ combined
experience in developing and evaluating multiple temporal
event sequence analysis tools and dozens of case studies
with real data and users, (2) the information contained
in case studies gathered from the literature, and (3) email
interviews with 8 individuals who conducted such case
studies and developers who observed analysts using the
tools. Many of the case studies mentioned as examples
below used EventFlow [41], but several other visual analytic
tools (e.g. [46], [47], [48], [58], [61], [64]) are also presented.
For each strategy, we include multiple examples taken from
case studies. We describe the rationale for using the strategy
and when possible indicate the resulting reduction in num-
ber of records or events (data volume) and unique complete
sequences (pattern variety). In the older case studies, the
reduction numbers could not always be collected because
the original data were not available anymore, partners had
moved on, or the functionality used to apply the strategy
had changed and the operations could not be reproduced.

Fig. 2. Rather than visualizing all patients, CareFlow [46] employs a
Goal-Driven Record Extraction strategy (S1) to focus users on only the
most relevant 300 patients by applying similarity analytics, which results
in a comprehensible flow graph of only 47 nodes and 111 edges.

3.1 Extraction Strategies

S1: Goal-Driven Record Extracting

The experience from case studies strongly indicates that the
question at hand often requires only a fraction of the records
found in large datasets. For example, in the ASTHMA case
study [40], the U.S. Army Pharmacovigilance Center had 15
million patient histories. When the analytical goal was to
determine how medications for asthma had been prescribed
in the past six years, they extracted a set of 182,000 records.
For Washington Hospital Center, among their over 1 million
patients only 3,600 had been administered the radiology
CONTRAST whose effect was being studied [61]. In a study
of EPILEPSY at the Rennes University Hospital, out of
1.1 million epileptic patients only 4,800 had the inclusion
criteria for the study. In these case studies, less than 1% of
the total records were extracted.

Traditional query and extraction tools (e.g. i2b2 [2] or
BTRIS [1] in the world of medicine) are needed before
the focused analysis can begin. More advanced techniques
are also possible, such as refining the extraction by se-
quential pattern or integrating statistics with analytics to
filter the records by relevant features. In a Frequence [47]
case study on FOURSQUARE check-in data, the analysts
were interested in users who lived in New York City and
had an active Twitter account. After extracting records
by users’ geographical and Twitter activity attributes, the
number of records (users) was reduced by 91% (from over
200,000 to 17,739). Then, to investigate the check-in pattern
of “Professional→Food”, the analysts further refined the
extraction and retained records that contained this pattern.

CareFlow [46] was integrated with patient similarity
analytics [59] to focus on only clinically relevant patients.
In the HEART case study, the database originally contained
50,625 patients. Using standard extraction techniques, re-
searchers were able to determine that 4,644 met the criteria
for heart failure. However, the complexity of these patients,
who often suffered from many comorbidities, was tamed
by filtering the dataset to show only patients with clinical
proximity, determined by the devised similarity measures
from analytics [59]. CareFlow could then be productively
used to discover the common temporal patterns for the
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most clinically similar patients. For instance, in Figure 2,
limiting the view to the 300 most similar patients provides a
comprehensible overview of the treatment progression, with
a flow graph of only 47 nodes and 111 edges.

Based on our observations and interviews, this strategy
is most often applied at the start of an analysis. Analysts
continue using it during the analysis to eliminate errors and
outliers or to focus on groups of records of interest. For
example, when the analytical goal is to construct cohorts
(e.g. [30], [66]), record extraction occurs at the very end,
possibly followed by loading the extracted data in other
tools (e.g. [38], [67]) for further exploration.

S2: Goal-Driven Event Category Extracting

Some studies require a large portion of the records in a
database, but only a small fraction of the events in each
record. For example, the EPILEPSY study only extracted
the “seizure” events and the ten preceding administrations
of anti-epileptic drugs. In the ASTHMA study [40], only
event categories that represented asthma related medica-
tions were retained. This reduced the number of events
by 34% (from 1,607 to 1,054) and the number of unique
complete sequences by 33% (from 98 to 66). In another study
related to PROSTATE CANCER radiation treatment [45],
the analytical goal was finding what durations and intensity
of radiation produce the fewest bone fractures yet still
curtail the cancer. The analysts removed events such as eye,
dental exams, and even the procedure’s details to trim the
dataset and greatly focus the analysis.

We observed that analysts often start working with even
fewer event categories than those extracted and progres-
sively add the remaining categories as needed to refine
the analysis. In the ASTHMA case study [40], researchers
started with each category of medications one by one and
then looked at two at a time. Even three drugs at once
turned out to introduce too much pattern variety and re-
quired applying other strategies to simplify the display. In
another case study called DEVIATION [15], the goal of
the National Children’s Hospital analysts was to see if a
required set of actions were taken in the correct order and
what were the deviations. The data volume was small so
events of all categories could be seen at once. However,
the sequences were so diverse that no clear patterns for the
deviations could be seen at first. The analysts started over
with only two event categories (the first two event categories
of the sequence performed in correct order), resulting in an
immediate 98% reduction in the number of unique complete
sequences and allowing them to easily spot a widespread
protocol deviation. They then included other event cate-
gories one by one to find more complex deviations.

Based on our observations and interviews, this strategy
is often used at the beginning of an analysis, to help analysts
get started with a simpler view. Tools have been developed
to guide the choice of a small number of meaningful event
categories to look at. For example, Choose2 [39] suggests
pairs of event categories based on metrics such as “maxi-
mize record coverage” (Figure 3). This strategy continues to
be useful during the analysis, with some users exploring a
few event categories at a time but in a systematic fashion.

Fig. 3. The interface of Choose2 [39]. It automatically selects a pair of
event categories to help users get started.

S3: Identifying Features Linked to Outcome
The holy grail of event sequence analysis remains under-
standing what sequences of events lead to a better out-
come than others, leading to hypotheses about causation.
Outcomes are often defined by inclusion of certain events
in a record. For example, the ultimate outcome of the
treatment of patients in the emergency department can be
whether they were discharged alive or discharged dead, and
the outcome of an online shopping clickstream is whether
the person purchased something or not [37]. Identifying
features (e.g. event categories, patterns) whose occurrences
are correlated to an outcome is a useful step in the analysis
of records with different outcomes.

In the HEART case study using CareFlow [46], the out-
come was defined as negative if a patient was re-admitted
into a hospital (or died) within 12 months of the initial
diagnosis of heart disease. Of the 300 similar patients shown
in Figure 2, 76 patients had negative outcomes and 224 had
positive outcomes. In this visualization, outcome is encoded
visually, with positive outcomes as green and negative out-
comes as red. As almost 75% of the patients managed to stay
healthy, most of the event sequences are green. However,
users can change the outcome measure interactively to test
new hypotheses, or filter to only patients with a certain
outcome. For instance, if users wish to examine only the
paths that led to mortality, the display would update to
show the progression of only the 10 patients who died.

This strategy is typically used at the beginning of an
analysis and guides the extraction of records, event cate-
gories, and patterns. When the data exhibit extraordinary
complexity, analysts might simplify the data before using
this strategy to ensure meaningful features. Tools have
been designed for comparing temporal event sequences and
identifying features linked to outcomes [24], [38], [47], [67].

S4: Aligning
A common question in event sequence analysis is “what
happened before and after a particular event of interest?
(e.g. emergency room visit)”, often in the context of a cause-
and-effect investigation. A useful strategy is to align all
records by the occurrence of a selected alignment event [60]
(e.g. the first, Nth, or last occurrence). A side effect of the
alignment is that records without the alignment event are
removed from the visualization.

This alignment strategy has been commonly used. For
example, in the LIVER case study [34], the analyst wanted
to understand how patients developed liver disease after
starting to use total parenteral nutrition (TPN) and records
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were aligned by the 1st TPN event so that the liver disease
events after the alignment point could be reviewed. In the
TWITTER case study [64], the analysts aligned the user
logs by the first use of the feature of interest to analyze
what other events preceded and followed the use of that
feature. In the BASKETBALL case study [42], the analysts
aligned the play-by-play sequence records by offense-to-
defense transitions to investigate how well the University
of Maryland team performed during these transitions.

Analysts might use the aligning strategy at any time
during the analysis, but aligning is often followed by a
temporal windowing (S5) to focus on events just before, just
after, or just around the alignment.

S5: Temporal Windowing
In many cases only a relatively small window of time
matters for a given analytical goal. The window selection
might be arbitrary (e.g. only the most recent two weeks of
data or the first 10 events) or goal driven (a period around
alignment events). The window size could be defined by
a time duration or number of events. In the case study of
PROSTATE CANCER treatment [45], the window was set to
be 10 years from each patient’ diagnosis of prostate cancer.
In the TWITTER case study [64], to understand users’ be-
havior at their first website visit, the analysts examined only
10 events from the beginning of each session. Additional
examples of the use of this strategy are given in the detailed
case studies of Section 4.

Temporal windowing is typically applied at the begin-
ning of an analysis for specifying the time span of interest or
complying with the data scope imposed by an Institutional
Review Board (IRB) review. It often follows aligning (S4)
to extract events around the alignment point. When the
records being studied are very long, temporal windowing
dramatically reduces both data volume and pattern variety.

S6: Selecting Milestone Events
In many situations the large volume of data comes from
streams of repetitious events. A typical strategy we ob-
served is to keep only the events corresponding to “mile-
stones”. For example in social media log analysis, such as
the use of Twitter, individual records typically include 100s
or 1,000s of tweeting events. Sharpening the analytic focus
might require thoughtful selection of milestone events such
as the 1st, 10th, 100th, and possibly 1,000th tweets in each
person’s record. This dramatically reduces the clutter of
tweets and allows analysts to study the timing of those mile-
stones in respect to other events. For example, relationship
to retweets, mentions, replies, etc. becomes clearer. Similarly,
analysts might choose to retain only the dates of the 1st,
10th, 100th, and 1,000th followers. In the medical domain,
we observed analysts only keeping the 1st diagnosis of
diabetes instead of keeping all occurrences (the diagnosis
has to be recorded at every doctor visit even if the disease
never goes away). Analysts sometimes picked the 3rd or 5th,
just to be sure the 1st one was not a coding error.

In the LOG case study (described in Section 4.3), the
analysts found that events of some categories repeatedly
occurred within a short period of time, and selected mile-
stone events to simplify the records. For every 50 events of
the same category, only the first one was selected (i.e. the

1st, 51st, 101st, etc). Looking at a month of activity of one
person, this strategy reduced the number of events by 98%
(from 12,012 to 290) and the number of unique complete
sequences by 30% (from 27 to 19) while still representing the
varying amount of activities in each day. The most common
daily pattern could be immediately identified.

This strategy has been used after visual review of the
raw data, i.e. at the start of the analysis. The non-milestone
events were then hidden from view, or removed entirely
from the data when data volume was an issue.

S7: Random Sampling of Records
If the previous strategies fail to sufficiently reduce the data
volume, random sampling of records – such as extracting
every 10th record – may become a reasonable strategy. In
the ASTHMA study [40], from a total number of 182,000
patients, the U.S. Army Pharmacovigilance Center selected
a random sample of 100 asthma patients under age 65 with a
new LABA (Long-Acting Beta Agonists) prescription. With
random sampling of records, analysts are likely to want to
extract as many records as possible or to balance groups of
cohort, so tools that iteratively alter the size of the selected
set would be useful. There is often some benefit in getting
a rough indication of the prevalence of the patterns being
sought [22].

Random sampling was only used as a last resort (e.g.
when the data didn’t even load). Two other potential strate-
gies, random sampling of events or event categories within
records, were not observed in the case studies and do not
seem useful (even though selecting milestone events in a
stream could be considered as a form of “goal oriented
sampling” of events).

3.2 Folding Strategy
S8: Temporal Folding
Some datasets have records that are long streams which may
be more successfully analyzed by folding (or splitting) each
record into yearly, monthly, or weekly units. In the radiol-
ogy CONTRAST case study [61], each patient record was
split into segments centered around each administration of
contrast material. In the FOURSQUARE case study [47], to
break down the long streams of users’ check-in events, the
analyst folded each stream with a 6-hour sliding window,
yielding short sequences of events that occur exactly within
the window. In a study of interpersonal VIOLENCE [49]
conducted at Yale University, the 90-day record of each of
the 141 participants consisted of detailed events such as
drug and alcohol use as well as incidents of arguments,
physical violence, sexual abuse, etc. The pattern variety
was overwhelming until the long streams were broken into
weekly records, thereby revealing weekend conflicts and
drug use. Further breaking the records by day showed yet
different patterns.

Interactive or automatic folding may detect cyclic phe-
nomena and reduce the variety of patterns to visualize.
Folding alone does not address data volume issues as the
number of folded records increases – although the number
of events remains constant. However, once the temporal
folding is done, pattern variety may be reduced, and record
extraction may become useful again (e.g. keeping only days
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Fig. 4. An illustration of grouping using pre-existing hierarchies.

with violent events). In the case studies, analysts usually
started by inspecting a sample of the data in visualization
tools to decide how to fold, e.g. that it was better to use
4am as the end of the day instead of midnight in the
VIOLENCE case [49]. None of the tools used in the case
studies included built-in folding features so it was done in
the source database and then the analysis restarted.

3.3 Pattern Simplification Strategies

S9: Grouping Event Categories
With the explosion of the number of event categories, aggre-
gation becomes necessary [18]. For example, seeing global
patterns is impossible when there are over 400 types of
lung cancer and over 200 types of bone cancer. Replacing
all lung cancers with a single event category and all bone
cancers with a single event category reduces the pattern
variety. While the number of events remains the same, the
simplification sharpens the analytic focus and allows the
analysts to determine that lung cancers often spread to
bones, but bone cancers rarely spread to the lungs.

In an EventFlow case study with the Children’s Na-
tional Hospital (WORKFLOW) the analysts reduced the
pattern variety by aggregating 61 emergency department
procedures into 18 meaningful groups – using their do-
main knowledge. This strategy reduced the number of
unique complete sequences by 39% (from 449 to 274). Scribe
Radar [64] supports a 6-level hierarchy for event categories,
from the high-level “client” events (e.g. web, iPhone, and
Android) to the low-level “action” events (e.g. click and
hover). It used page-level events (e.g. home, profile, search)
in the TWITTER case study for investigating how people
begin spending time on Twitter, and drilled into section-
level events (e.g. the follower and following sections in
the profile page) to analyze where people performed the
“follow” action.

Sometimes, events can be grouped using existing on-
tologies. Since most medical events (e.g. diagnoses and
medications) are organized in a standard ICD9 code hier-
archy, case studies using Frequence [47] and Care Pathway
Explorer [48] took advantage of them to mine frequent
patterns of medical events at different levels of detail. For
example, Figure 4 shows a set of events under cardiac
disorders in the diagnosis hierarchy, which contains four
different levels. The first level is the Hierarchy Name, which
is the highest level in the Hierarchical Condition Categories
(HCC) used in Medicare Risk Adjustment provided by

Fig. 5. Illustrations of color encoding before (a) and after (b) visual
grouping in the WORKFLOW case study.

Centers for Medicare and Medicaid Services (CMS). This
level has 38 distinct event categories. The second level is
the more detailed Hierarchical Condition Categories (HCC),
which contains 195 different codes. The third level contains
1,230 unique Diagnosis (DX) group names (the first 3 digits
of the ICD9 code). The fourth-level contains 14,313 different
codes of the International Classification of Diagnosis 9th
edition (ICD9). Similar hierarchies exist for other data types,
such as medications, procedures, and labs. All levels in these
hierarchies are a many-to-one mapping to the higher levels.

While grouping event categories is often used to pre-
process the data before analysis (e.g. to aggregate drugs
names by classes [40], [46]), dynamic aggregation (i.e. un-
doing and redoing the grouping) may be needed to provide
variable levels of detail during the analysis. For example,
in the WORKFLOW case study, the analysts began by
grouping a large number of event categories into high-level
ones. Then, other strategies were applied and observations
were made. To verify the findings, analysts needed to undo
several groupings to see a detailed display with low-level
event categories. This requires dynamic undo capabilities
that go beyond the standard rolling back to a past state.

Besides grouping event categories by modifying the
underlying data, we also observed analysts mapping similar
event categories with similar colors, helping them to reduce
the number of distinct colors on the display and perceive
event categories with similar colors as a group (Gestalt prin-
ciple of similarity [29]). This visual grouping approach does
not reduce data volume or number of unique sequences,
but seemed particularly useful when analysts were trying
to generate a more focused visualization including low-level
event categories. Figure 5 shows examples of color encoding
before and after visual grouping in WORKFLOW.

S10: Coalescing Repeating Point Events into One
When dealing with patient histories, a major simplification
is to convert multiple point events, such as 25 normal blood
pressure readings over 12 months into a simpler more mean-
ingful single interval event that shows normal blood pres-
sure during the 12 months. In the HYPERTENSION case
study, researchers analyzed a cohort of 1,294 patients with
hypertension enrolled in a chronic disease management
program at the Vanderbilt University Medical Center [58].
Researchers were interested in understanding the trends of
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blood pressure in these patients, as keeping blood pressure
in control is critical for reducing morbidity and mortality. In
total, there were 192,864 blood pressure measurements for
all 1,294 patients. However, to model control, all consecu-
tive instances of in-control and out-of-control assessments
were merged into intervals. This reduced the number of
blood pressure measurement events by 97% (from 192,864
to 6,537), yielding only about 5 intervals per patient.

In most cases, analysts apply this strategy in visualiza-
tion tools so as to inspect the effect and decide on the level
of simplification needed. However, it may also be applied
in the source database to reduce the data volume, especially
when the number of repeating events is very large.

S11: Coalescing Repeating Interval Events into One

The pharmacovigilance ASTHMA project raised this issue
for patients who received repeated prescriptions for the
same medication [40]. Patients often refilled the prescrip-
tion early, which appeared as an overlap of two intervals,
or delayed their refill, which appeared as a gap between
the intervals. Analysts simplified the patterns by merging
intervals with overlaps of less than 15 days or gaps of less
than 10 days resulting in long intervals indicating the “drug
episode”. For a subset of 100 asthma patients, applying this
strategy on the LABA events (prescriptions of Long-Acting
Beta Agonists) reduced the number of LABA events by 19%
(from 355 to 288), and the number of unique LABA patterns
by 45% (from 31 to 17). This strategy is another version of
S10 for interval events. One additional occasion of applying
this strategy is after an S10, for simplifying the interval
events produced by S10.

S12: Converting Hidden Complex Events into One

In many application domains, some high level complex
events such as a heart attack or surgery may consist of
20-100 events that all happened within a time period (e.g.
certain blood tests or imaging over multiple days). These
detail events may not be relevant to the analysis, so all
of them can be identified and replaced by a single event.
Data mining approaches such as knowledge-based temporal
abstraction [55] or frequent pattern mining [9] might also be
able to identify such complex events, leading to suggested
simplifications. EventFlow [41] allows users to search for a
specific event pattern – including temporal constraints and
the absence of events – and replace it with a shorter pattern
or even a single event (Figure 6).

In the HYPERLIPIDEMIA case study of Care Pathway
Explorer [48], a cohort of 14,036 patients with hyperlipi-
demia was analyzed. The patients had a total of 70,379
diagnosis events and 97,189 medication events during their
first year after diagnosis. At this level, few insights were
found so the analysts decided to focus on specific sub-
cohorts with pre-conditions. After filtering to patients with
a hypertension pre-condition, the patient count was reduced
to 2,800 patients, featuring 14,979 hyperlipidemia-related
diagnoses and 24,898 medication events. Then, frequent
sequence mining analytics were run to reduce this event set
into only 28 frequent event sequences that could be visual-
ized easily using a Sankey diagram. Unveiling these hidden
event sequences led to interpretable insights, such as finding

Fig. 6. The Search & Replace interface of EventFlow [41]. Users can
search for a pattern and replace it with another pattern. In this figure, a
pattern of four point events is converted into an interval event.

that patients with higher low-density lipoprotein cholesterol
levels tend to use higher levels of pain medication.

Besides converting events in the actual data, we also
saw analysts assign rainbow colors to sequences that form
a process. For example, in the DEVIATION case study [15],
the analysts assigned red, orange, green, blue, and purple
to the five procedures that should be performed in order to
follow the protocol (Figure 9b). The rainbow colors helped
the analysts easily detect correct sequences and deviations.

This strategy seems to be more useful after other extrac-
tion and simplification strategies have been used. Inspecting
the data in visualization tools helps analysts search for those
complex events and spot variations.

S13: Bucketing by Time Period

When the number of events per record and the variety of
patterns is so high that most sequences become unique, a
powerful strategy is to bucket events by a fixed time period
(such as one minute when dealing with computer usage or
weeks when dealing with long term medication use). Events
occurring during the time period are replaced by one event
– or just a few. Analysts can define rules to summarize each
time period, e.g. using the most common event category, a
combination of the most common and least common event
category, or dynamic characteristics of the data such as the
occurrence of spikes, increases or drops, etc. This strategy
creates events at regular intervals and produces patterns
which can be further simplified using the other analytic
focusing strategies. Reviewing sample raw data helps define
the bucketing strategy. We have seen this strategy only
executed using external scripts. As of today, it has not been
implemented in the tools we surveyed.

3.4 Iterative Strategies

Extraction strategies can be executed in traditional database
systems, then the extracted results loaded in the interactive
visual analytic tools. However, when volume and variety
remained a problem after the initial extraction, most ana-
lysts started by looking at a small subset of data or chose a
partitioning strategy.



1077-2626 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2539960, IEEE
Transactions on Visualization and Computer Graphics

8

TABLE 1
Examples of 20 case studies using multiple analytic focusing strategies gathered from the literature, or based on email interviews with individuals
who conducted the analyses and developers who observed analysts using the tools. A bullet point indicates a strategy was used in a case study.

AST
HM

A
[40

]

BASK
ETBALL

[42
]

CONTRAST
[61

]

DEVIA
TIO

N
[15

]

DRUG
[13

]

EHR
COHORTS [20

]

EPIL
EPSY

[41
]

FOURSQ
UARE

[47
]

HEART
[46

]

HYPERLIP
ID

EM
IA

[48
]

HYPERTENSIO
N

[58
]

LIV
ER

[34
]

LOG
[41

]

M
EM

uRY
[33

]

M
OTIO

N
[12

]

PROST
ATE

CANCER
[45

]

PROST
ATE

CANCER
2 [11

]

TW
IT

TER
[64

]

VIO
LENCE

[49
]

W
ORKFLOW

[41
]

S1: Goal-Driven Record Extracting • • • • • • • • • • • • • • • • • •
S2: Goal-Driven Event Category Extracting • • • • • • • • • • • • • • • •
S3: Identifying Features Linked to Outcome • • • • • •
S4: Aligning • • • • • • • • • • • • • • • •
S5: Temporal Windowing • • • • • • • • • • • • • •
S6: Selecting Milestone Events • • • •
S7: Random Sampling of Records • •
S8: Temporal Folding • • • • • • •
S9: Grouping Event Categories • • • • • • • • • • • • • • • •
S10: Coalescing Repeating Point Events into One • • • • • • • • • •
S11: Coalescing Repeating Interval Events into One • • • •
S12: Converting Hidden Complex Events into One • • • • •
S13: Bucketing by Time Period •
S14: Analyzing Small Subset then Larger One • •
S15: Partitioning • • • •

S14: Analyzing A Small Subset then A Larger One
It is common practice to conduct visual inspections of even
small subsets of data to facilitate the data cleaning and
wrangling process. Our interviews and case studies indicate
that analysts also find the visual inspection of a subset of
data to be effective for guiding the choice of extraction
strategies (e.g. identifying interesting event categories) and
for devising meaningful simplification strategies (e.g. merg-
ing short intervals into longer ones). Since visual inspection
of the transformation results allows analysts to refine their
work and further sharpen analytic focus, the data transfor-
mations need to be defined and tested within the interactive
visual analytic tool. Analysts can define and test the extrac-
tion, temporal folding, and pattern simplification strategies
on a subset of data. When they are satisfied with the results,
they may apply the strategies to larger subsets or the entire
data. In the case of EventFlow [41], most of the strategies
have been implemented and can be saved, allowing them
to be reapplied on a larger dataset at load time before the
visualization is generated. Those data transformations could
also be executed in the source database as well, or in a
separate analytic focusing tool. Progressive Visual Analytics
techniques [21], [57] may provide complementary solutions.

S15: Partitioning
We also observed analysts use a “divide and conquer”
strategy by partitioning a large dataset into disjoint subsets
that could be analyzed independently without losing any
information. One common practice is to partition by event
categories. For example, in a dataset of patients’ drug pre-
scriptions, disjoint subsets can be created for patients who
have only taken certain drugs, such as only Drug A, only
B, A and B. This partition method is particularly effective
for data where event categories are unevenly distributed
(i.e. each record contains only some of the event categories).
Another approach is to create the subsets based on record
attributes. For example, a large set of customer histories
might be partitioned by the state of residence, or age groups.
After the partition, each disjoint subset contains a complete

(i.e. all records satisfying the condition are included) but a
small portion of the entire data, which preserves the tempo-
ral patterns among events of different categories. Sometimes
the differences of patterns in each partition are significant,
so the analysis by partitions may produce clearer insights
than trying to analyze the full dataset.

4 EXAMPLES OF COMBINING MULTIPLE STRATE-
GIES

Our case study review shows that most case studies ap-
plied multiple strategies, as summarized in Table 1, which
includes 20 case studies using 12 different visualization
tools [11], [12], [20], [33], [41], [46], [47], [48], [58], [60], [61],
[64]. To illustrate how analysts combine and iterate over
multiple strategies, we describe three case studies in detail.

4.1 DEVIATION Case Study
In the DEVIATION case study [15], researchers at the
National Children’s Hospital were studying how well the
recommended trauma treatment protocol (ATLS [8]) had
been followed. ATLS specifies two order-sensitive surveys.
Specifically, the primary survey consists of four injury eval-
uations: Airway (A), Breathing (B), Circulation (C), and
Disability (D), and is followed by the secondary survey for
identifying other injuries. In this case study, the hospital
wanted to find out what percentage of the patients were
treated following the correct protocol and what the devia-
tions were. The dataset was small (215 records, 1,991 events)
but the variety of patterns was surprisingly large – which
was unexpected since the protocol should be followed con-
sistently (Figure 9a). The analysts could not readily discern
the common deviations and had to apply a series of focusing
strategies to reach their goal.

First, the analysts chose only two event categories (Air-
way and Breathing) (S2: category extract), resulting in a
98% reduction in the number of unique complete sequences
(from 208 to only 4), which allowed them to immediately
spot a common problem: 14% of the patients were treated
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in a B→A order, while the airway evaluation was missing
for 2% of the patients. The analysts then added Circulation
events, which fell in two different categories: “central pulse”
and “distal pulse”. Since the two event categories of pulse
checks were both acceptable circulation evaluations, the
analysts combined them into a single one named “any
pulse” (S9: category grouping). This made clear that 17% of
the patients received two consecutive pulse checks (once for
each type of checks), which was an acceptable practice. To
remove the noise, the analysts replaced any two consecutive
“any pulse”events with a single one, at the time of the earlier
pulse check (S10: n points to one).

Finally, the analysts added the event categories for dis-
ability evaluation and secondary survey. This produced an
overview of all events related to the protocol (Figure 9b).
The analysts found that the most prevalent pattern was
A→B→C→D followed by a secondary survey. This indi-
cated that 48% of the patients had been correctly treated
following the protocol. To focus on the deviations, the
analysts removed the records that were in the correct order
(S1: record extract), which made it easier to review the 28
deviations. They spot that the most common deviation was
to perform the disability evaluation during the secondary
survey, which occurred in 21% of the cases. Compared with
the original data, the successive analytic focusing strategies
had reduced the number of events by 73% (from 1,991 to
542), and the number of unique complete patterns by 87%
(from 208 to 28).

4.2 DRUG Case Study

In the DRUG case study [13], analysts from the business and
pharmacy schools aimed to describe the patterns of hyper-
tension drug prescriptions, for example, when patients start
taking multiple drugs, switch from one drug to another, or
interrupt their prescriptions (i.e. significant gaps, indicating
poor adherence to the drug regimen). The drug dataset
contained 790,638 patients with 9,435,650 prescriptions of
5 drugs, extracted using a combination of record extrac-
tion (S1: record extract) and temporal windowing with a
two year window (S5: windowing). Each prescription is
an interval event of 30 or 60 days, and each drug is an
event category. Aggregation of similar drugs into larger
drug classes had already been done in the database prior to
extraction (S9: category grouping). The entire dataset failed
to load into the visualization tool, so the analysts started by
looking at a sample of a few thousand of records (S14: small
then large). This led them to decide to partition the dataset
(S15: partitioning) by separating out the patients who only
ever took 1 drug. This reduced the number of events by
36% (6,052,157 remaining for the patients who had used at
least 2 drugs during their treatment). The analysts continued
the process and partitioned the data into 31 disjoint subsets
that could be analyzed separately (i.e. each permutation for
patients who took 1 drug, 2 drugs, then 3, 4 and the last
subset for patients who used all 5 of the drugs).

The partitioning allowed the largest subset (713,971
events, i.e. less than 8% of the original data) to fit in the
visualization tool for visual inspection. The analysts started
with a medium size subset consisting of 37,613 patients who
took only 2 drugs (Figure 10a). They merged the repeating

Fig. 7. The displays of the disjoint subsets of patients who took the yel-
low drug only (a), the purple drug only (b), and both drugs (c) (with light
blue representing the use of a single drug, dark blue representing the
concurrent use of the two drugs, and gray representing interruptions).
The analysts resized the displays by the number of records in each
subset to keep track of their relative sizes.

short intervals of the same event category into long ones,
by removing small gaps and overlaps in the prescriptions
(S11: n intervals to one). This strategy reduced the number
of events by 74% (from 588,847 to 151,274), and the number
of unique complete sequences by 84% (from 26,906 to 4,417).
To focus on overlaps and interruptions among prescriptions,
the analysts searched and replaced the overlap and inter-
ruption patterns with new events (S12: pattern to one).
Since new events were created, this strategy increased the
number of events by 57% (from 151,274 to 237,078), and the
number of unique complete sequences by 51% (from 4,417 to
6,659). Finally, the analysts grouped the event categories of
single drugs into a new category (S9: category grouping),
representing the periods when patients were taking only
one drug of any kind. The number of events stayed the same
but the number of unique complete sequences was reduced
by 42% (from 6,659 to 3,871).

In total, for this 2-drug subset the above strategies
reduced the number of events by 60% (from 588,847 to
237,078) and the number of unique complete sequences by
86% (from 26,906 to 3,871). A focused display was produced
and helped the analysts to answer their research questions
(Figure 10b). The analysts reapplied these strategies to sim-
plify the other 30 subsets and combined their findings.

The partitioning strategy requires analysts to keep in
mind the relative size of each subset. We observed them re-
sizing the displays of different subsets to match the relative
number of patients. For example, in Figure 7 the analysts
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were analyzing 3 subsets, looking at the patterns of two
drugs (alone or combined) for a total of 166,478 patient
records. They repeated this display layout for all possible
pairs of drugs, compared their relative number of records,
and then moved on to patients using 3, 4 or 5 drugs. A
useful addition would be visual tools for representing the
relative size of partitions.

4.3 LOG Case Study

LOG is a recent case study in which security researchers
were interested in developing new methods for detecting
insider threats. The dataset [16] contained approximately
180 million events from the monitoring of computer usage,
consisting of 6 categories (e.g. login, email, web browsing,
etc.) with an average of 33 thousand events per user. A
black-box anomaly detection algorithm [54] was used to
compute a suspiciousness score per person per day. Unfor-
tunately, the algorithm did not provide any explanations for
the suspiciousness scores, so EventFlow was used to help
the researchers understand what might be anomalous in the
temporal event patterns of the person-days determined to be
suspicious. The records of users with low scores during the
whole period were removed (S1: record extract). Temporal
windowing was used to keep only one month worth of
data around the suspicious person-days (S5: windowing),
and temporal folding was applied to cut the month-long
streams into smaller day-long records (S8: folding). These
three strategies together reduced the data volume by 99%,
keeping only 1,311,337 events. As the researchers needed to
review one user at a time, they partitioned the remaining
data and created a subset for each suspicious user, yielding
56 disjoint subsets of 23,416 events on average (S15: parti-
tioning). Each subset was then loaded into the visualization
tool for visual inspection.

Since the computer usage events of the same category
often repeatedly occurred within a short period of time and
created visual clutter, the researchers coalesced repeating
events (S10: n points to one) using EventFlow’s “Search &
Replace” operation. Repeating point events adjacent to each
other within 10 minutes were converted into an interval,
starting at the time of the first point event and ending at
the time of the last one. For a medium size subset of 12,012
events, the number of unique complete sequences remained
the same, but the visual clutter was eliminated due to a 96%
reduction in the number of events (from 12,012 to 462).

To further simplify the data, the researchers then looked
for patterns representative of suspicious days (S3: link to
outcome) using a separate High Volume Hypothesis Testing
tool (CoCo [38]), which supports comparing two groups of
temporal event sequences. For each subset, CoCo identified
event categories that occurred significantly more or less
prevalently in high scored days than low scored days.
Thus, analysts inspected a display that used only these
differentiating event categories (S2: category extract). For
the above medium size subset, this strategy further reduced
the number of events by 92% (from 462 to 24), and the
number of unique complete sequences by 74% (from 27 to
7). Comparisons in temporal patterns between days with
high and low scores were made based on the simplified
visualization. As we continue this case study, we hope that

Fig. 8. The number of interviewees who used each strategy before. Data
collected from our interviews with 10 event sequence analysts. Dark
blue represents frequent use while light blue indicates occasional use.

sets of series of strategies can be combined into a semi-
automated workflow.

5 FOLLOW-UP INTERVIEWS WITH ANALYSTS

To validate the proposed list of strategies, we interviewed
senior event sequence analysts. An invitation was broad-
casted to a mailing list of people who had shown interest
in EventFlow. Ten responded to participate and provided
feedback on the focusing strategies (4 by video conferencing,
6 by email). On average, these participants had 5 years of
experience in event sequence analysis on a wide range of
datasets including electronic health records, computer logs,
public transportation logs, and students’ academic records.
Case studies from 4 of the participants had been reviewed
earlier and had guided our development of the strategies.
The 6 others were new. We described the 15 strategies and
asked the participants which ones they had used before and
how often. For those strategies they had never used, we
asked them to provide possible reasons (e.g. not useful for
their data). Then, we asked if they thought that having the
list of strategies would be useful for their future studies, or
for helping novice analysts to get started. Finally, the partici-
pants gave general comments in an open-ended conversion.

Use of the Strategies
Figure 8 shows the use of the strategies reported by the in-
terviewees. Overall, each strategy had been used by at least
three interviewees in their studies. Particularly, S1 (record
extract), S2 (category extract), S9 (category grouping), and
S15 (partitioning) were the most popular strategies and have
been used by almost all interviewees, while S6 (milestone),
S7 (random sample), S8 (folding), and S12 (pattern to one)
were used by less than half of them.

The most common reason for not using a strategy is
“it is not useful for my data.” For example, an interviewee
commented on S6 (milestone): “If you have many events you
may want to use this [strategy], but our data is very sparse.”
Another one who analyzed students’ academic records com-
mented on S7 (random sample) “our data is small and we
want to see the whole population” and on S10 (n points to one)
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“the repetitions have meanings in our data and we want to keep
them.” Besides, the interviewees also mentioned they had
never thought about some of the strategies and would try
them. Particularly, S8 (folding) and S12 (pattern to one) were
noted by three interviewees as inspiring. One who worked
on healthcare explained S12 could help him “aggregate the
medical processes and make the data cleaner.” “I have not thought
about it. This inspires me!” he stated.

All interviewees thought the list of strategies would be
useful for their future studies. One mentioned “it helps me
think about different ways of analyzing the data” and another
stated “it reminds me of something I have used before so I don’t
have to start from scratch [when analyzing a new dataset].” As
for helping novice analysts get started, some interviewees
thought the strategies were useful: “They (novices) may not
know which [strategies] are the best but can start by checking
them one by one ... they can get more ideas after that.” Also,
one suggested: “[Providing] examples of how other analysts use
the strategies would be helpful.” Some interviewees expressed
caution: “Using the strategies requires basic analytic skills and
domain knowledge ... they [novices] may get overwhelmed easily.”

Missing Strategies

In the open-ended conversations, interviewees mentioned
possible new strategies that are not included in the list of
observed strategies. One interviewee analyzed drug pre-
scription patterns where many events were logged using
the same timestamps as the patients’ visits. He requested
a strategy for dealing with the complexity caused by the
concurrency (e.g. aggregating the concurrent events into an
event set). Another whose data was sparse with some events
distributed far from the others asked for a strategy for
deciding when to remove the timestamps and only keeping
the sequential information. Besides, grouping similar event
sequences and only showing a few representatives in each
group was suggested for creating thumbnails of complex
datasets. As the field of event sequence analysis expands
and new strategies emerge, our list of strategies can be
expanded to guide new users.

Undo Support

Another topic discussed by several interviewees was the
need for undo support. One interviewee stated: “Users
should feel safe that every step they take can be consistently and
cleanly backtracked without fear of corrupting the visualization
or, worse, the underlying data.” Some others emphasized
“you don’t have to restart when you make a mistake” and one
suggested “it (undo) would enable going back and forth to see
the effect [of a strategy].” Despite its importance, designing
an undo model and its interface for the analytic focusing
strategies described in this paper remains a challenge and
will be our future work.

6 ANALYTIC FOCUSING WORKFLOW

In the 20 case studies we examined, the workflow for reach-
ing insight varied greatly, depending on the data, the goal
of the analysis, and the experience of the analyst. Still all
analyses applied one or more extraction strategies and one
or more simplification strategies, while folding and iterative

strategies were valuable strategies to consider. With the be-
lief that complex workflows are often derived from an ide-
alized one, we propose a basic workflow to guide analysts.
Beginning at the raw data, extraction strategies are applied
to extract relevant records, event categories, or events (S1-
7), thereby significantly reducing the data volume. When
dealing with activity streams, the event sequences could be
extremely long and would be more meaningful if analysts
apply the folding strategy (S8) to replace a long sequence
with many shorter ones so that cyclic patterns are easier to
recognize. Pattern simplification strategies (S9-13) are used
after extraction and folding. Data analysts, who are driven
by analytical goals, need to visually inspect the data during
the workflow to pick the strategies, review the results and
tune the parameters. Useful insights are more visible in the
simplified data.

However, this linear workflow does not guarantee useful
insights. Analysts usually develop customized workflows
based on their data, analytical goals, and intermediate find-
ings. Besides, when large datasets inhibit loading and carry-
ing out exploration, starting from a small sample (S14) or a
partition (S15) enables exploratory operations to determine
the best workflow. Analysts can use the captured workflow
as a macro to reapply the operations on the full dataset or
other partitions.

Event sequence analysis is still a new domain compared
to the analysis of other data types, so future prototypes and
case studies will likely lead to a refined workflow.

7 CONCLUSION

The paper described a set of 15 strategies for sharpening
analytic focus that analysts can use to reduce the data vol-
ume and pattern variety including (1) extraction strategies,
(2) temporal folding, (3) pattern simplification strategies,
and (4) iterative strategies. For each strategy, we provided
numerous examples of use and of the impact on volume
and/or variety. The strategies are based on 20 case studies
conducted with domain experts using real data, and refined
based on interviews which allowed us to provide details not
available in the original research papers describing the pro-
totypes. The case studies reveal the richness and diversity
of application domains that can benefit from visual analytic
tools for temporal event sequences and demonstrate the
growing community of users who put them to work.
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