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ABSTRACT

The study of complex activities such as scientific production and
software development often require modeling connections among
heterogeneous entities including people, institutions and artifacts.
Despite numerous advances in algorithms and visualization tech-
niques for understanding such social networks, the process of con-
structing network models and performing exploratory analysis re-
mains difficult and time-consuming. In this paper we present Orion,
a system for interactive modeling, transformation and visualiza-
tion of network data. Orion’s interface enables the rapid manipula-
tion of large graphs—including the specification of complex linking
relationships—using simple drag-and-drop operations with desired
node types. Orion maps these user interactions to statements in a
declarative workflow language that incorporates both relational op-
erators (e.g., selection, aggregation and joins) and network analyt-
ics (e.g., centrality measures). We demonstrate how these features
enable analysts to flexibly construct and compare networks in do-
mains such as online health communities, academic collaboration
and distributed software development.

Keywords: social network analysis, data management, data trans-
formation, graphs, visualization, end-user programming.

1 INTRODUCTION

As social network analysis has gained popularity, researchers have
developed novel statistical techniques, visualization designs, and
user interfaces to better support the complex tasks of making sense
of large networks. However, many of these recent advances take the
process of assembling a network model for granted. Much data that
is collected for analysis, whether scraped from online data sources
or tabulated using traditional surveys, is not inherently in the form
of a network but instead a raw list of data points and their cor-
responding attributes. This requires analysts to extract their own
model of a network from the raw data. But for many data sets,
networks can be modeled in as many different ways as analysts
have hypotheses. For instance, after collecting a database of online
community data, analysts may wish to examine the relationships
between community members to measure collaborative support, or
the relationships between thread posts to measure the dissemina-
tion of information, or the relationships between communities as
a whole to measure comparative community success. To analyze
each of these scenarios, completely different network models need
to be extracted from the original data.

Typically, refactoring network data into such various models re-
quires custom code that can take analysts days or even weeks.
While it is also possible to express most of the necessary operations
as database queries, this requires defining a schema, loading the
data, and then forming the correct SQL queries—including com-
plex queries such as multi-table joins. Repeating this level of effort
as new questions emerge may undermine the exploratory process
and even dissuade some analysts from testing all hypotheses.
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To address these issues, we introduce Orion, a system for inter-
active modeling, transformation and visualization of network data.
While many visualization and data mining techniques have been
proposed for social network analysis, to our knowledge Orion is
unique in its support for the early stages of data transformation
and assessment when forming network models from source data.
Orion enables iterative, exploratory analysis by reducing hours of
programming and transformation to a few minutes of interactive,
graphical specification. We make the following contributions:

A unified model and workflow language for network data.
We use relational data tables as our fundamental model and rep-
resent networks as edge tables over a domain of integer node in-
dices. We chose this model to correspond to those used by analytic
databases and scalable network analysis packages. Our workflow
language provides both relational operators and graph analysis rou-
tines and enables the generation of reusable analysis scripts. The
language supports a range of analysis tasks including network defi-
nition, filtering, aggregation, and statistics computation.

A graphical user interface for iterative network manipula-
tion and visualization. Orion translates user interface actions,
such as drag-and-drop and menu commands, into operations in the
underlying workflow language. Orion also supports the specifica-
tion of complex linking relationships. The system first constructs
a graph model of links among table columns; a traversal algorithm
then identifies all feasible linking paths defining networks for a set
of user-selected node types. This approach simplifies the otherwise
difficult process of specifying a series of relational join and aggre-
gation operations. Once a network has been defined, Orion enables
visual exploration using tabular, matrix and node-link views. Net-
works can also be exported for use in other analysis tools.

The rest of the paper is structured as follows. After reviewing
prior work, we describe our data model and present the Orion inter-
face. Next, we discuss our enabling algorithms for network extrac-
tion and describe our workflow language. As a preliminary evalua-
tion of Orion, we demonstrate its use in case studies in online health
communities, academic collaboration and distributed software de-
velopment. We then discuss future work and conclude.

2 RELATED WORK

Orion draws on related work in graph visualization, analysis tools,
and data management. We discuss selected relevant projects below.

2.1 Graph Visualization Techniques
Researchers have devised a variety of visualization techniques
for networks [16]. Two common representations used in social
network analysis are node-link diagrams (typically using force-
directed placement) and adjacency matrix views [8]. Hybrids of the
two have also been proposed [14, 15]. These approaches organize
elements according to the linkage structure of the graph.

An alternative approach is to plot network data according to the
attributes of the nodes (e.g., [28, 33]), as in a scatter plot or so-
called “semantic substrates” [28]. Network links can then be drawn
between nodes. This approach is well-suited for assessing potential
correlations between node attributes and network structure.

In a related vein, PaperLens [23] uses multiple coordinated views
of node attributes to explore publication databases. The NetLens
system [22] generalizes this approach to support networks that fit a



“content-actor” data model, i.e., bipartite networks such as publica-
tions and authors. In contrast, Orion supports an arbitrary number
of linking relationships both within and between data tables.

Others have researched means of dealing with large graphs in ex-
cess of tens of thousands nodes. Common strategies include filter-
ing and aggregation. van Ham and Perer [32] introduce a degree-of-
interest function [6] that reduces a graph to a small connected sub-
set of nodes based on a set of foci (e.g., search results). PivotGraph
[33] and Honeycomb [9] aggregate networks by “rolling up” edges
according to shared node attributes; an analyst can collapse a social
network of corporate employees to show the summed connection
strengths between workers’ geographic locations. ManyNets [5]
enables comparison among multiple networks using a tabular view
of summary graph statistics. If desired, users can still view standard
(albeit less scalable) node-link diagrams on demand.

Orion draws on this prior work: it provides both node-link and
matrix visualizations and supports network aggregation based on
node attributes. However, with the sole exception of NetLens [22],
each of the above systems assume a well-defined network is given
as input to the tool. None of these tools help the user define and as-
sess a variety of network models derived from arbitrary data tables.

2.2 Network Analysis Tools
Recent years have seen a proliferation of network analysis tools.
Many of these tools combine visualization and statistics within an
interactive environment [1, 7, 25, 27, 29]. Others are programming
libraries [18, 19, 24] or menu-driven interfaces [3, 31] that provide
access to analysis algorithms. While these tools support data im-
port from common file formats (e.g., GraphML) and external data
services (e.g., Twitter or Facebook), they do little to facilitate the
flexible construction of network models from arbitrary data tables.
Orion is not intended as a replacement for these systems; rather, it is
designed to assist the unsupported early stages of network analysis.
In the process, it enables the use of these downstream tools.

2.3 Managing Graph Data
Another domain of related work is graph data management.
Database researchers [2, 10] have developed storage strategies and
query languages [10] for large networks. Similarly, a number
of commercial systems—including neo4j, InfiniteGraph, Allegro-
Graph, DEX, OrientDB, and sones/GraphDB—are now available.
These systems facilitate storage, indexing, and querying of large
graphs, but with goals different from Orion. Representative appli-
cations include managing social network web sites and querying
motifs in biological networks. Orion instead focuses on the con-
struction and assessment of network models from source data.

2.4 Interactive Data Transformation and Querying
Orion focuses on transforming data to create network models; other
systems similarly assist early stages of data cleaning and reformat-
ting. Google Refine [17] and Data Wrangler [20] enable analysts
to reformat input data sets and correct data errors prior to analysis.
D-Dupe [21] assists the process of finding and resolving duplicates
within a data set. Any of these tools might be used to prepare data
tables prior to network modeling with Orion. Similar to Wrangler,
Orion produces as output not only data, but also a declarative trans-
formation script that can be reapplied to new data and inspected to
review data provenance. In this light, Orion can also be understood
as an end-user programming tool for network manipulation.

Orion was particularly influenced by the Polaris system [30],
now commercialized as Tableau. Polaris maps drag-and-drop op-
erations of data variables into a formal algebra from which both
database queries and resulting visualizations can be derived. One
key insight from this work is the value of deeply coupling visual-
ization tools with rich facilities for data transformation. Orion sim-
ilarly provides a user interface in which user actions are mapped to

statements in an underlying data transformation language. While
Polaris enables filtering and aggregation operations over a single
data table, Orion instead enables manipulation of multiple tables,
including linking relationships realized as relational joins.

3 DATA MODEL

A variety of data models exist for handling graph data; common
structures include adjacency lists and adjacency matrices. However,
these representations alone are insufficient for network analytics, as
in many cases networks must be derived from a prior data source
permitting a number of models and parameterizations. As a simple
example, a social network extracted from an email archive might
include links only between senders and recipients, or might include
links among all co-recipients.

Prior research on visualization toolkits has noted the value of
representing networks as relational tables [11]: each row represents
an edge in the graph, and columns contain source and target node
values among other edge attributes. This format provides a sparse
representation of the network, enables easy querying of attributes,
and supports efficient edge iteration. On the other hand, this format
is inefficient for path following and is thus ill-suited for many graph
algorithms. As a result, we adopt a hybrid data model in Orion.

We use relational data tables as our base representation. Tables
can represent individual node types or linking relationships. At
times, node types may be implicit within the attributes of a table;
Orion provides methods to promote these values to their own table.
Networks can be inferred from the foreign key relations among ta-
bles. This design allows us to support arbitrary node types and link-
ing relations while facilitating integration with relational databases.

Once a specific linking relationship has been chosen (as de-
scribed in subsequent sections), Orion models the network using
a specialized edge table format. Source and target columns repre-
sent incident nodes using zero-based integer indices. For efficient
processing, these indices default to the row index in the correspond-
ing node table. This scheme works well for edges involving a single
node table, but leads to index collisions among different tables. To
ensure distinct keys we bias the indices for a given table by the total
size of any previous tables. The mapping from node tables to index
ranges is stored as metadata for the edge table.

Some graph analysis routines, such as force-directed layout or
clustering coefficient calculation, can be performed by simply iter-
ating over edges. However, other methods—including shortest path
and betweenness centrality algorithms—must traverse the graph by
following paths. Accordingly, our edge tables support the construc-
tion and caching of adjacency lists, represented as an array of sorted
integer arrays for in-links, out-links or both.

We have found this integer-based representation provides multi-
ple benefits. In particular, it aids rapid access of associated node
data via index-based table lookups and facilitates the creation of ef-
ficient network analysis routines. Representing nodes as zero-based
integers enables the use of simple arrays to keep state within graph
algorithms, avoiding the overhead of associative data structures.

Our data model, like the rest of Orion, is implemented in the Java
programming language. We have implemented our own data struc-
tures and processing routines, but our data model was intentionally
chosen to correspond to those used by modern analytic databases
and scalable network analysis packages (e.g., [24]). In future work,
we want to exploit this correspondence to implement our workflows
on massively scalable platforms. We use relational operators for
as much of our workflow as possible so that we can later leverage
shared-nothing parallel databases. That said, we will show shortly
that our own implementation already scales to networks involving
millions of elements, and so supports a broad class of data sets.



Figure 1: The Orion User Interface, consisting of (a) a schema viewer for manipulating data tables and (b) a linker interface for creating network
models. Analysts drag-and-drop desired node types to the linker and Orion responds with (c) a table of possible linking paths. The (d) preview
display shows the resulting network data. Analysts can also specify (e) aggregation, (f) filtering, and (g) splitting (subdivision) criteria.

4 THE ORION USER INTERFACE

With the Orion user interface, analysts can import source data from
multiple formats, specify a variety of network models, compute
statistics, and visualize the results. Analysts can then export either
the resulting data or a declarative script defining the transformation
workflow. In this section, we first describe the design of the Orion
interface through a concrete usage scenario. We then provide more
detailed descriptions of Orion’s user interface components.

4.1 Usage Scenario
Consider the real-world example of a researcher studying online
health communities organized around medical conditions (e.g.,
asthma, lupus, lyme disease, etc). Driving questions include: How
do community dynamics and structure vary across conditions? Can
we gain new insights from the co-occurrence of symptoms and con-
ditions? To explore these questions, our analyst collected over 3
million discussion posts by crawling MedHelp.org, a public online
health site. The initial database consists of a single table where
each row represents a post on the site. Table columns include a fo-
rum (community) name, the user name of the poster, the post date,
the title of the discussion thread, and the post text.

From this data, the analyst would like to analyze the social net-
works of the individual communities. She begins by importing the
data table (a large CSV file) into Orion. The table and its columns
are displayed in the Schema Viewer in Figure 1a.

Next, she must define the entities of interest that might form the
nodes of her graph. Currently, these entities reside implicitly as
values within the table. The analyst right-clicks the username field
and selects “Promote” in the resulting context menu. This opera-
tion causes all username values to be extracted from the table: a
new table is constructed with one row for each unique user and the
username field in the original table is replaced with a foreign key
referencing the new table. As the analyst wishes to model a social
network based on co-participation within a discussion thread, she
similarly promotes the thread id field as an entity of interest.

The analyst would now like to construct a social network among
users. She drags the id field (the primary key) from the username
table and drops it on the Linker interface in the center of the Orion
window (Figure 1b). The interface allows analysts to specify de-
sired source and target node types. In response, Orion calculates all
feasible network definitions involving username entities as nodes
(Figure 1c). In this case, there is only one feasible result: linking
users by shared threads. Should the analyst wish to consider alter-
natives, she could promote other entities (e.g., individual forums).

When the analyst clicks the check box to include the linking
path, Orion responds by showing a preview of the resulting graph
(Figure 1d). Orion previews include both a list of tables that will be
generated, and an inspector for individual table values. For now the
analyst would like to limit her exploration to a single community.
She drags the forum field from the Schema Viewer to the Filter re-
gion of the Linker; she then selects the “Asthma” forum using the
resulting search box (Figure 1f). The preview updates in turn. Sat-
isfied, the analyst clicks the “Create Network” button to add the
network to the data set; the Schema Viewer updates with a new
edge table containing links between all posters to the “Asthma” fo-
rum who have posted to the same thread; by default, edge weights
indicate the number of shared threads between two users.

By right-clicking the “Asthma” edge table, the analyst reveals
additional options. She can choose to visualize the network using
both matrix and node-link diagrams. In a matrix overview (Fig-
ure 2a), the disjoint structure of the community becomes evident
which suggests that newcomers arrive into the community, ask a
question, and it gets handled by one of a handful of leaders. This
also suggests that the community may be more of an answer mill
rather than a place of prolonged discussion. The analyst can dig
deeper by filtering the visualization to only show a highly active
cluster and pivots to a node-link visualization (Figure 2b). Here,
with nodes sized by their post count and colored according to their
betweenness centrality, the analyst can focus on specific nodes of
interest for further analysis.



Figure 2: Orion Visualizations of Online Health Communities. From left-to-right: (a) A sorted matrix view of an online asthma forum. A few
central leaders divide up responses among incoming questions. (b) Node-link diagram of highly active cluster of the same forum. (c) Plot of
betweenness centrality values for two different network models, sized by number of posts. The models have similar centrality distributions.

Individual tables can be inspected and visualized using bar or
scatterplot charts. Each visualization also supports interactive fil-
tering controls. After filtering the graph to highlight interesting
patterns, the analyst can save the filtered edge table as an additional
entry in the Schema Viewer. The analyst can also compute statis-
tics, including node degrees, betweenness centrality and clustering
coefficients. Applying a statistic adds additional columns to impli-
cated edge and/or node tables.

Now the analyst would like to assess the effects of using a dif-
ferent network model. The current model includes edges connect-
ing all posters to same the thread. What happens if instead thread
respondents are connected only to the thread initiator? The ana-
lyst follows the same modeling path as before, but this time adds a
join predicate: she right-clicks the linking path of the network and
chooses to filter how the ohc table is linked to itself. In this par-
ticular data, a poster has a post id of 0 if they initiated the thread
and a post id greater than 0 if they responded to the thread. As
these data characteristics are specific to this particular community
data, the analyst enters a customized formula in the resulting dialog:
INT1(‘post id’)==0 && INT2(‘post id’)>0

The formula ensures that the source node always corresponds to
the thread initiator and that the target node is a respondent. The an-
alyst creates this network, computes betweenness centrality values,
compares values for the two models in a scatter plot (Figure 2c) and
notes a high degree of correlation. She decides to proceed with the
simpler model connecting only initiators to respondents.

The analyst would now like to start comparing the various health
communities. She revisits her previous steps, but instead of filter-
ing the forum field, she drags it to the Split region. The preview
display then shows entries for multiple networks – one for each fo-
rum. Upon completion, these networks are grouped together within
a subtree of the Schema Viewer. Context menus for the grouping
element enables batch invocation of statistics for all contained net-
works (see Figure 7 for an example). The analyst can now continue
analyzing the diverse characteristics of health communities.

4.2 User Interface Design

The previous scenario illustrates a subset of the modeling and vi-
sualization functionality supported by Orion. We now describe the
user interface components in more detail. Along the way, we out-
line additional functionality, such as the ability to merge multiple
sets of edges and construct “roll-up” graphs via node aggregation.

4.2.1 Schema Viewer

The Schema Viewer (Figure 1a) provides an overview of all data ta-
bles in the current data set and supports data manipulation. Source
data tables and generated edge tables are indicated by icons. Ta-
ble attributes are displayed using icons indicating their data type,

with special annotations for primary and foreign key fields. Con-
text menus enable analysts to rename and remove both tables and
columns, create derived columns using an expression language,
specify primary keys, and promote values in one or more columns
to new node tables. Analysts can also access statistics and visual-
ization options via context menus. Drag-and-drop interactions al-
low analysts to specify foreign key relations (by dragging a field
on to a primary key with a matching type), import data (by drag-
ging external data files from the operating system), and querying
for network models (by dragging fields to the Linker interface).

4.2.2 Link Specification
The Linker interface (Figure 1b) is the primary means of defining
networks. Analysts start by dragging desired node types to fields for
source and target nodes. Orion responds by computing the possible
linking paths between the source and target nodes and displays the
results in a table. Users can select the resulting paths to include
those edges within the resulting network model.

Filtering. Analysts can drag-and-drop fields to specify filtering
criteria (Figure 1f). Filters can be created for any table involved in
the network. Orion generates dynamic query widgets—selection
lists and range sliders—based on the data type. Corresponding
predicates are then applied during network construction to limit the
nodes and edges included in the final graph. In addition to sin-
gle table predicates, analysts can specify filtering criteria directly
on joins. Filterable joins are presented in a context menu when an
analyst right clicks a linking path. Currently, Orion only supports
user-defined join predicates specified as Java code statements.

Splitting. An alternative to filtering is to split a network into a
collection of subgraphs. Examples include inspecting time slices
and splitting on categorical variables (e.g., health forums). Orion
supports splitting by categorical variables or using window func-
tions over quantitative variables (see Figure 7). Of course, not all
such splits are useful: naı̈vely splitting on a node’s primary key re-
sults in a collection of singleton graphs. In this special case, Orion
instead interprets the split as a request for subgraphs centered at
each node and provides a graph distance control. Analysts can ex-
tract all nodes and edges within a specified graph distance to ex-
tract egocentric networks. Networks generated by splitting appear
as grouped collections that support batch operations.

Rollup. When specifying desired node types via drag-and-drop,
typically the primary key of a node table is used. If analysts instead
drag-and-drop a non-key field, an aggregated network will be con-
structed that uses the unique field values as individual nodes (c.f.,
PivotGraph [33]). The underlying nodes are grouped according to
the requested field; edges between groups are tallied to provide an
aggregate representation of the underlying graph.

Multiple Edge Sets. By selecting multiple linking paths, Orion
allows analysts to construct networks with multiple edge sets.



When multiple paths are selected, the linking interface enables
controls for choosing an aggregate function for merging edge sets
(Figure 1e); options include basic logical (or, and) and arithmetic
(count, sum, product) operations. For arithmetic operations, ana-
lysts can also provide numerical weights for each edge set.

Preview & Confirmation. As analysts manipulate settings within
the linker display, a preview panel updates in response (Figure 1d).
Analysts can review the number and size of all tables generated, and
inspect the values of individual tables. Once an analyst is satisfied
with the linking definition, they can click the ‘Add Network’ button
to add all resulting tables to the schema viewer.

4.2.3 Visualization
Orion also supports visualizations: table displays, basic data graph-
ics (bar and scatterplot charts), node-link diagrams, and matrix
views. Visualizations are shown in a separate window; different
visualization types are accessible via tabbed panes. These windows
include a schema viewer containing only the data tables implicated
in the current visualization. Similar to tools such as Tableau and
Spotfire, analysts can parameterize the display and perform visual
analysis using filtering, sorting, zooming, and visual encoding con-
trols. To support a variety of visualizations, Orion uses the Java
implementation of the Protovis specification language [12].

5 NETWORK DEFINITION AND EXTRACTION

Having introduced the Orion interface, we now discuss some of
the underlying algorithms enabling interactive network modeling.
While relational tables provide a flexible model for representing
data, network extraction involves creating linking queries that reg-
ularly include one or more join operations. As a result, defining
networks via a query language such as SQL can be tedious and
error-prone. To simplify the process, Orion models the connec-
tions among data tables and analysts request networks simply by
specifying the desired node types. The system then enumerates the
possible network definitions, from which an analyst can choose.

We describe the steps of this process in the following subsec-
tions. First, we construct a linking graph that models the foreign
key relations among tables. In response to user queries (i.e., de-
sired node types), we then run a search algorithm over this graph to
identify valid linking paths. Linking paths are then translated into
relational algebra statements for extracting network edge tables.

5.1 Linking Graph Construction
To aid network definition, Orion builds a linking graph: a data
structure that supports user queries over possible network mod-
els. Nodes within a linking graph correspond to data table fields
(columns); primary key fields are assumed to represent a specific
node type. Edges in the graph represent relationships among fields
(e.g., foreign key references) that might be used to define a network
among node types. Given input schemas for a set of data tables,
Orion constructs a directed graph containing three types of edges:

1. Key reference (R) edges link all primary and foreign keys rep-
resenting the same node type.

2. Intra-table (T ) edges link all foreign keys within a table. The
edges represent potential linking paths between node types.

3. Conjugate (C) edges link a foreign key F of one node type to
a primary key P of a different node type if and only if the table
containing F has an additional foreign key that references P.

While the first two edge types are straightforward, conjugate
edges merit further explanation. These edges represent paths in
which one can join a linking table with itself to form a unipar-
tite graph—a process analogous to multiplying a bipartite adja-
cency matrix by its transpose. Key reference (R) and intra-table

Authors

Id
LastName
FirstName

Institutions

Id
Name

Links

AuthorId
PubId
InstId
AuthorNum

Publications

Id
Year
Title
Type
Venue
Abstract

(R) Key Reference
(T) Intra-Table
(C) Conjugate

Figure 3: Schema and linking graph for publications data. Primary
keys are italicized. Links are styled according to the edge type; links
without arrows are bi-directional (R & T edges). The graph is a data
structure for finding all networks involving a pair of node types.

Query: Authors.Id×Publications.Id (ties between people and papers)

Authors.Id R−→ Links.AuthorId T−→ Links.PubId R−→ Publications.Id
⇒ πAuthorId,PubId(Links)

Query: Authors.Id×Authors.Id (social ties between people)

Authors.Id R−→ Links.AuthorId T−→ Links.PubId C−→ Authors.Id
⇒ πAuthorId,PubId(Links) 1PubId=PubId πPubId,AuthorId(Links)

Authors.Id R−→ Links.AuthorId T−→ Links.InstId C−→ Authors.Id
⇒ πAuthorId,InstId(Links) 1InstId=InstId πInstId,AuthorId(Links)

Figure 4: Example linking queries and results returned by Orion’s
search algorithm. Linking path edges are annotated by type: key ref-
erence (R), intra-table (T ) or conjugate (C) edges. Paths are mapped
to relational algebra statements to extract network edge tables.

(T ) edges are bidirectional; conjugate (C) relationships are unidi-
rectional, from a foreign key to a primary key with a different node
type. Figure 3 shows the schema and linking graph for publication
data extracted from the ACM digital library.

5.1.1 Automated Key Finding

To facilitate accurate key assignments—and thus accurate linking
graph models—Orion includes mechanisms to automatically infer
single-column primary and foreign key relations. To identify pri-
mary keys, the algorithm finds columns with distinct elements in
each row and then ranks the candidates according to data type (e.g.,
integers are preferred to strings or dates) and position (left-most
columns—those with a minimal index position—are preferred).
The top-ranking result for a table is then chosen as the key, though
within the interface users are free to override this choice.

For a selected primary key, Orion identifies candidate foreign
keys by first finding all table columns with a matching data type. It
then scores each candidate using a classifier based on the following
features, where P is the primary key column, F the candidate for-
eign key column, dist returns a set of distinct column values, and
lcs returns the longest common subsequence within two strings:

fa =
|{i :Fi∈dist(P)}|

|F | fb =
|dist(P)\dist(F)|
|dist(P)| fc =

|lcs(name(P),name(F))|
max(|name(P)|,|name(F)|)

In other words, each candidate is classified using normalized fea-
tures concerning (a) how many elements in the candidate column
occur in the primary key column, (b) how many distinct primary
key values occur in the candidate column and (c) the similarity of
the primary key and candidate column names. To construct the clas-
sifier, we fit a logistic regression model using a corpus of test data
sets, including all examples in this paper. We have not run a com-
prehensive evaluation, but we currently achieve perfect classifica-
tion accuracy in cross-validation tests on our corpus.



Algorithm 1 FindPaths(source, target)
maxOccurrences← source = target ? 3 : 1
paths←{}
queue← new Queue([source])
while queue is not empty do

path← dequeue(queue)
len← length(path)
t← len < 2 ? null : previous(path)
u← current(path)
for all e ∈ edges(u) do

v← v : v ∈ e∧ v 6= u
a← |{n ∈ path : sameBase(n,v)}|> maxOccurrences
b← sameBase(t,u,v)∧ (len > 2∨¬sameTable(u,v))
c← type(e) 6= R∧ sameTable(t,u,v)
d← type(e) =C∧¬(sameTable(t,u)∧ sameBase(t,v))
if ¬(a∨b∨ c∨d) then

newPath← append(copy(path),v)
if v 6= target then

enqueue(queue,newPath)
else if reverse(newPath) 6∈ paths then

paths← paths∪{newPath}
end if

end if
end for

end while
return path

5.2 Linking Path Search
Given a linking graph and desired source and target fields (node ta-
ble primary keys), Orion searches the graph to identify valid linking
paths. These paths can be translated into relational algebra state-
ments (e.g., projections and joins) to create a network edge table.

Orion’s path-finding method (Algorithm 1) performs a breadth-
first traversal starting from the source field. The traversal algorithm
allows repeated visits, but greedily prunes the search at each step
by testing the validity of candidate path segments. For a given path
segment path, we denote the most recently added field by u, the
previously added field by t, and a newly encountered candidate field
by v. All fields have a corresponding base field indicating the node
type: primary key fields reference themselves, while foreign key
fields reference a primary key. With these definitions in place, valid
paths are defined by the following conditions, which roughly corre-
spond to the boolean variables a, b, c, d within Algorithm 1:

1. Excluding source and target fields, paths can not contain the
same base more than twice.

2. The same base field can not occur three times consecutively
unless u and v are in the same table.

3. Three consecutive fields can not be from the same table, un-
less the third field is reached by a key reference edge (R).

4. A field reached through a conjugate edge (C) can not be added
to a path unless (a) t and u are in the same table and (b) t and
v share the same base field, which differs from that of u.

The algorithm returns a set of valid linking paths with which an
analyst can define a network model. To simplify the results, the
algorithm culls paths that are identical to a previously found path
if reversed. In addition, Orion sorts the returned paths such that
shorter paths with less variation in base field types are listed first.

5.3 Network Extraction
Once an analyst has selected a set of desired linking paths, Orion
translates these paths into relational algebra statements that when

evaluated provide a network edge table. Figure 4 provides exam-
ples of input queries and the resulting linking paths and relational
algebra statements (using the data and linking graph in Figure 3).

Mapping paths to relational algebra is straightforward. In most
cases, each pair of fields (ignoring source and target fields) maps
to two columns of the same table, with adjacent pairs related by an
equijoin on the shared inner field. Special cases include conjugate
edges, for which an encountered pair is instead joined against itself,
and “self-edges” within a table that result in an odd number of path
elements (e.g., tree data with paths of the form T.P R−→ T.F R−→ T.P).

When an analyst selects a network definition, Orion executes the
resulting queries and constructs an edge table with integer node in-
dices (§3). Orion similarly turns filtering criteria specified in the
user interface into relational selection predicates that are incorpo-
rated into the queries. If an analyst selects multiple linking paths,
Orion will construct multiple edge tables. Orion then forms the
union of these edge tables; analysts can further specify aggregation
functions in the Orion user interface to control if and how multiple
edge sets should be merged.

6 ORION WORKFLOW OPERATORS

In addition to transforming data, one goal of Orion is to enable the
construction of editable and reusable analysis workflows. These
workflows are realized in a declarative language incorporating both
relational operators and network statistics. By mapping user in-
terface actions into statements in this language, Orion supports
not only data manipulation and visualization, but can also export
reusable scripts that keep a record of data provenance. In this sec-
tion we describe the operations supported by our language and how
they can be used to model and analyze network data.

Each Orion workflow task is an operator accepting one or more
named parameters. These operators modify a data set: a collection
of named tables. A workflow is simply a sequence of tasks. Figure
5 shows an example workflow for the case study in §7.1. Orion
externally represents workflows using a simple XML format.

6.1 Data Import and Export
Orion’s input / output operators read in data from different sources
and write results in a variety of formats. The read operator im-
ports data tables from external sources such as delimited text files
(e.g., comma- or tab-separated values), relational databases, and
GraphML or Dot (GraphViz) network files. Network files are trans-
lated into tables, typically one node table and one edge table. For
delimited text files, Orion infers column data types based on their
contents. The write operator writes either individual tables or ex-
tracted networks to a database or files in these same formats.

6.2 Schema Modification
Orion includes a handful of operators for modifying table schemas.
The rename operator renames tables or individual columns. The
key operator indicates that a column serves as a primary key, while
the references operator assigns foreign key relations. Foreign key
relations are particularly important, as they are used as the basis
for determining feasible linking paths. While tables pulled from
relational databases often have the appropriate key relations defined
in their schemas, data in common formats such as CSV regularly
lack this metadata. To add this metadata, our key finding algorithm
(§5.1.1) generates a sequence of key and references statements.

6.3 Table Transformation
To aid the creation of network models, Orion provides operators
for manipulating single tables. The remove operator simply drops a
column or table. The derive operator allows analysts to create new
columns by writing a user-defined function over existing columns.
Orion currently accepts user-defined functions as snippets of Java
code that are dynamically compiled at run-time.



6.3.1 Ranking Table Rows
The rank operator adds a new column containing rank-ordered in-
teger indices. Rank statements must include sorting criteria: one or
more fields to sort in ascending or descending order. The sort order
determines a set of non-repeating indices. Statements can also take
group-by fields; each group is then rank-ordered separately. The
rank operator can be used to create indices enabling nuanced join
predicates (e.g., the post id field used in the scenario of §4.1).

6.3.2 Promoting Column Values to Node Tables
Tabular data often contains implicit linking relationships via val-
ues embedded in a column. For example, a single table of research
grant awards might contain fields for a principal investigator (PI),
a co-PI, and the institutions of each. From this data one may wish
to form social networks of researchers and/or institutions. To help
model such networks explicitly, Orion provides the promote op-
erator. Given one or more field names, the promote operator first
identifies and counts all distinct values in those columns and then
populates a new table with the schema (id,value,count). Values in
the input table are replaced with foreign key references to the new
“promoted” table. This operation allows analysts to extract implicit
node types into explicit node tables. Returning to the grants exam-
ple, an analyst might promote the PI and co-PI columns to create a
new node table for people; the original table now serves as a linking
table defining a network among people nodes.

6.4 Network Modeling
At the core of the Orion language are network creation operators.

6.4.1 Network Definition
Given a set of linking paths as input, the link operator extracts a
network (edge table) according to the process described in Section
5. All input linking paths must have the same starting and ending
fields. If multiple linking paths are provided, the link operator will
construct a single edge table that is the union of the per-path edge
tables. The resulting table includes a path id column indicating
which linking path generated a link. If an optional aggregation pa-
rameter is provided, the operator will generate a final edge table by
applying an aggregate function over a group-by of the source and
target columns; the aggregate values then become the edge weights.

The link operator also accepts optional projection and filtering
parameters. Projection parameters consist of node or linking table
columns to include across joins (as if included in a SQL SELECT
clause). Filter parameters are name-value pairs of table names and
predicate functions. Both single-table predicates (for filtering ei-
ther node or linking tables) and two-table predicates (for join pred-
icates on linked tables) are accepted. The link operator also accepts
boolean parameters for suppressing self-links in unipartite graphs
and for ensuring that only distinct edges are considered in linking
tables. The latter enforces pre-aggregation of linking tables.

6.4.2 Sub-Network Extraction
Once a network has been created, Orion provides operators for ex-
tracting sub-graphs. For example, an analyst may want to compare
time-slices of an evolving network or various ego-centric networks
extracted from a larger social graph. The filter operator creates a fil-
tered edge table based on a set of edge and node predicates. Edges
are removed if a node predicate returns false for any incident node.

Given a set of “focus” nodes, the subgraph operator returns a
subgraph containing all edges within a specified minimum distance.
Orion measures graph distance by counting hops or summing edge
weights. In the future, we plan to also support the degree-of-interest
extraction method introduced by van Ham and Perer [32].

Orion also provides iterators that enable repeated invocation of
an operator over a sequence of parameter settings. Iterators are
useful for performing batch operations, such as repeated filtering

Workflow w = new Workflow();
w.add(Tasks.read("ohc") ......// load data file
...file("ohc.csv")
...type("csv"));
w.add(Tasks.promote("users") .// promote username field
...from("ohc")
...select("username"));
w.add(Tasks.promote("forums") // promote forum field
...from("ohc")
...select("forum"));
w.add(Tasks.link("cp") // create forum × forum network
...path("forums.id", "ohc.forum",
........"ohc.username", "forums.id")
...distinct(true));

w.add(Tasks.stat("cp") // calculate edge weight deviance

...field("dev")

...stat("edgeWeightDeviance"));

Figure 5: An example Orion workflow definition for the online health
case study in §7.1. Here the workflow is shown as Java code; work-
flows can also be persisted using a simple XML format.

or subgraph extraction. Iterators can implement split operations
to segment networks according to categorical or numerical fields.
For numerical data columns, analysts can choose to split a network
using a sliding window (e.g., to create separate time slices of a net-
work) or an anchored window (e.g., to show the evolution of a net-
work over time) while specifying the bounds of interest. Iterators
also enable batch statistics calculation (see §6.5).

6.4.3 Network Aggregation
At times an analyst will be more interested in the aggregate prop-
erties of a graph than in leaf-node details; given a social network,
she may wish to view the aggregate connections among genders or
cities. The rollup operator aggregates edges according to specified
properties of the nodes (c.f., [33, 9]). The rollup operator generates
an aggregate edge table and node tables for the node attributes.

6.5 Network Analysis
Orion additionally provides network analysis algorithms. The stats
operator computes one or more statistics of a network and stores
the resulting values in the corresponding node or edge tables. The
statistics operator is modular, allowing user-defined functions to be
added to the workflow language. Currently these functions must be
written in the Java programming language and conform to a pro-
vided interface definition. Supported statistics include in-degree,
out-degree, betweenness centrality, eigenvector centrality, cluster-
ing coefficient, edge weight asymmetry, edge weight deviance, com-
munity identification, and linkage-based sorting.

While many of these metrics are common to social network anal-
ysis, a few deserve special mention. The edge weight asymmetry
and deviance measures are inspired by van Ham et al’s Honeycomb
[9] system. The former is simply the logged ratio of edge weights
between corresponding anti-parallel edges in a directed graph. The
latter calculates the amount an edge weight deviates from the ex-
pected value if one assumes a uniform random distribution of total
weight across the cells of the adjacency matrix. Deviance can help
identify edges with unexpectedly strong or weak strengths, particu-
larly in dense aggregated networks.

Community identification is performed via a greedy hierarchical
clustering optimizing Newman’s modularity metric [26]. Linkage-
based sorting provides an integer sort order of nodes that attempts
to minimize the distance among connected nodes. We approxi-
mate this objective by seriating the nodes using the cluster tree con-
structed by the community identification algorithm (c.f., [34]). The
resulting ordering is particularly useful for visualization purposes,
such as permuting the rows and columns of an adjacency matrix
diagram to reveal clusters (c.f., [14]).



Figure 6: Matrix view of connections between online health forums.
Edges are weighted by the number of distinct cross-posters. The
cells are then colored according to edge weight deviance.

The layout operator is similar to the stats operator, put instead
computes spatial coordinates for subsequent layout in a visualiza-
tion. This operator currently supports force-directed layout only.

6.6 Summary
In summary, the transformations supported by Orion are realized
in a declarative workflow language. Saved Orion sessions are sim-
ply XML-serialized versions of this workflow, and so can easily be
edited or reviewed directly in a text editor. While the Orion inter-
face enables rapid specification of these workflows, we have also
found that programmatic use of the workflow language (as in Fig-
ure 5) has greatly aided data analysis in our research groups.

7 CASE STUDIES

We now present a collection of case studies illustrating how Orion
has been applied to conduct network analyses in multiple domains.

7.1 Online Health Communities
The scenario in §4.1 introduced an analysis of online health com-
munities. In addition to comparing the social networks of individual
forums, our collaborating analyst is also interested in exploring the
connections between communities. Might cross-posting behavior
provide insights into the comorbidity of medical conditions?

To assess such questions, the analyst generates a network in
which the nodes correspond to discussion forums and edge weights
indicate the number of distinct users who have posted in both fo-
rums. To construct this network with Orion, the analyst promotes
both the username and forum fields to node tables. The analyst then
requests a network with forum nodes as both the source and target.
Orion suggests the desired result: linking forums by shared users.

The analyst then runs the edge weight deviance statistic to calcu-
late the degree to which edge weights vary from the expected value
(assuming a uniform random distribution). The resulting matrix di-
agram is shown in Figure 6, with cells colored by deviance.

By inspecting both this matrix view and the sorted edge table,
the analyst has flagged a number of unexpected connections. Some
connections appear to indicate possible data errors; for example, the
hearing loss forum has unexpectedly strong connections to many
other forums. Other strong connections indicate interesting co-
occurrences (e.g., cold/flu and stress, ear/nose/throat problems and
heart disease) or common misdiagnoses (e.g., lupus and lyme dis-
ease). Orion has enabled her to make these observations in a matter

Figure 7: Using Orion to subdivide an ACM co-authorship network by
publication date. The Split region on the lower right provides controls
for defining a filtering window; the Preview pane in the center lists all
resulting tables. When the networks are created, the Schema Viewer
on the left groups the results to support batch statistics calculation.

Figure 8: Time-sliced betweenness centrality scores for researchers
in the ACM digital library. Centrality scores are normalized per year.
The data was generated in Orion and then exported to Tableau.

of minutes. The analyst is now following up on these results, for
example by correlating them with external comorbidity data.

7.2 Academic Production and Collaboration
We are also using Orion to explore academic production and collab-
oration networks; for example, §5.1 discusses data extracted from
the ACM Digital Library. To inspect the career progress of com-
puter scientists, we use Orion to construct a social network based on
co-publication. Using Orion’s subgraph extraction facilities (Figure
7), we define social networks over increasing periods of time (e.g.,
first all publications up to 2000, then 2001, etc). We then batch
compute betweenness centrality scores for each extracted network.
As Orion enables easy data export, we subsequently loaded the data
into Tableau for further analysis, leading to the plot in Figure 8.

Orion’s flexibility also enables assessment of other models. For
example, we have constructed the network of all researchers who
have published in the same venue (by promoting and linking on
the publication venue) within the same year (by specifying a join
predicate enforcing matching years).

The ACM publication data contributes to a larger analysis initia-
tive with social scientists at the first author’s university. The scien-
tists are studying academic collaboration and have collected mul-
tiple data sets indicating links among university faculty. In addi-
tion to publication databases, the data include department and PhD
committee memberships and co-PI relations on grants. These het-
erogeneous edge sets can be combined and weighted in any number



Figure 9: Matrix diagrams resulting from an Orion analysis of GitHub, a hosting service for open-source software. (a) Raw counts of follower
links between cities, sorted by geographic proximity (column nodes “follow” row nodes on GitHub). (b) Follower links colored and sorted by
asymmetry. (c) Followed links colored by deviance from expected value, sorted geographically.

of ways to form a collapsed network. We are using Orion’s edge ag-
gregation features to create and compare network models built from
heterogeneous linking data.

7.3 Software Development on GitHub

Finally, we have used Orion in collaboration with computer sci-
entists studying global development patterns in open-source soft-
ware. The data under investigation comes from GitHub, a web
service that hosts open-source projects. Using the GitHub web
API, the researchers have collected over 1,000,000 million commits
and 500,000 explicit “follower” connections among roughly 50,000
users. In addition, each user’s location has been geocoded accord-
ing to a self-reported location string and then mapped to near-by
major metropolitan areas (see Heller et al [13] for more details).

Using Orion, we can quickly generate and analyze networks ex-
tracted from this data. For example, we have constructed social
networks based on commit history: a link is included between two
users A and B if B makes a commit to the same repository imme-
diately after A. We can specify this network in Orion by linking
users via a table of commits. We have as input two tables: one for
users and another for commits. The commit table includes the date,
project name, and the user (as a foreign key). First we promote the
project (repository) name to its own table, then link users accord-
ing to a shared repository. We limit links to temporally adjacent
commits by first applying a rank operation based on the commit
date, and then adding a join predicate that ensures that only adja-
cent ranks are included in the resulting network.

We can also construct networks of “who follows whom” by link-
ing users using a table of extracted follower relations. By request-
ing the user location attribute as a node type (rather than the user
id), we construct an aggregated graph among major cities, with
edge weights indicating the number of connections between users
in those cities. We can then apply edge weight asymmetry and
deviance statistics to examine differences among various locales.
Figure 9 shows selected matrix views from this analysis (originally
published in [13]). For example, in Fig. 9c we see that Paris and
Tokyo each have many fewer incoming “followed” links than would
be expected if links were assigned randomly, and that San Francisco
consistently receives a surplus of “followed” links. While these par-
ticular images have been stylized for publication using Protovis [4],
the underlying analysis can be performed completely within Orion.

8 CONCLUSION AND FUTURE WORK

This paper introduces Orion, a system for interactive modeling,
transformation, and visualization of network data. By providing a
unified model, workflow language, and graphical user interface for
iterative network manipulation, the construction and comparison of
networks empower analysts to be more exploratory and flexible in

their analysis. Through case studies involving online health com-
munities, academic collaboration networks, and global software de-
velopment, we demonstrate that Orion effectively supports the vi-
sual analysis of multidimensional heterogenous networks.

As analysts gain the flexibility to create new models and trans-
formations of network data with Orion, a critical need arises for
better methods to preview and compare the constructed networks.
While Orion provides some initial capabilities to support these
tasks, we believe providing even more sophisticated visual and sta-
tistical techniques to summarize the similarities, differences, trends,
and outliers of the resulting networks is an area ripe for future re-
search. Additionally, while Orion provides great power for analysts
to model networks that match their hypotheses, the vast number
of possibilities to construct a network may seem daunting. Future
work includes providing users with smarter suggestions to help un-
cover networks models with interesting and meaningful patterns.
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