
Online Submission ID: 0

Orion: A System for Modeling, Transformation and
Visualization of Multidimensional Heterogeneous

Networks
Category: Research

Abstract

The study of complex activities such as scientific production and software development often re-

quire modeling connections among heterogeneous entities including people, institutions and artifacts.

Despite advances in algorithms and visualization techniques for understanding such social networks,

the process of constructing network models and performing exploratory analysis remains difficult and

time-consuming. In this paper we present Orion, a system for interactive modeling, transformation

and visualization of network data. Orion’s interface enables the rapid manipulation of large graphs —

including the specification of complex linking relationships — using simple drag-and-drop operations

with desired node types. Orion maps these user interactions to statements in a declarative workflow lan-

guage that incorporates both relational operators (e.g., selection, aggregation and joins) and network

analytics (e.g., centrality measures). We demonstrate how these features enable analysts to flexibly

construct and compare networks in domains such as online health communities, electronic medical

records, academic collaboration and distributed software development.

Keywords: social network analysis, data management, data transformation, graphs, visualization, end-

user programming.

1 INTRODUCTION

As social network analysis has gained popularity, researchers have developed novel statistical techniques,

visualization designs, and user interfaces to make sense of large networks. However, many of these ad-

vances take the process of assembling a network model for granted. Much data that is collected for anal-

ysis, whether scraped from online data sources or tabulated using traditional surveys, is not inherently in

1

Online Submission ID: 0

the form of a network but instead a raw list of data points and their corresponding attributes. This requires

analysts to extract their own model of a network from the raw data. For many data sets, networks can be

modeled in as many different ways as analysts have hypotheses. For instance, after collecting a database

of online community data, analysts may wish to examine the relationships between community members

to measure collaborative support, or the relationships between thread posts to measure the dissemination

of information, or the relationships between communities as a whole to measure comparative community

success. To analyze each of these scenarios, completely different network models need to be extracted

from the original data.

Typically, refactoring network data into such various models requires custom code that can take ana-

lysts days or even weeks to write. While it is also possible to express most of the necessary operations

as database queries, this requires defining a schema, loading the data, and then forming the correct SQL

queries — including complex queries such as multi-table joins. Repeating this level of effort as new ques-

tions emerge may undermine the exploratory process and even dissuade some analysts from testing all

hypotheses.

To address these issues, we introduce Orion, a system for interactive modeling, transformation and

visualization of network data. While many visualization and data mining techniques have been proposed

for social network analysis, Orion focuses on the often-overlooked early stages of data transformation

and assessment when forming network models from source data. Orion enables iterative, exploratory

analysis by reducing hours of programming and transformation to a few minutes of interactive, graphical

specification. We make the following contributions:

A unified model and workflow language for network data. We use relational data tables as our

fundamental model and represent networks as edge tables over a domain of integer node indices. We chose

this model to correspond to those used by analytic databases and scalable network analysis packages.

Our workflow language provides both relational operators and graph analysis routines and enables the

generation of reusable analysis scripts. The language supports a range of analysis tasks including network

definition, filtering, aggregation and statistics computation.

A graphical user interface for iterative network manipulation and visualization. Orion translates

user interface actions, such as drag-and-drop and menu commands, into operations in the underlying work-

2

Online Submission ID: 0

flow language. Orion also supports the specification of complex linking relationships. The system first

constructs a graph model of links among table columns; a traversal algorithm then identifies all feasible

linking paths defining networks for a set of user-selected node types. This approach simplifies the other-

wise difficult process of specifying a series of relational join and aggregation operations. Once a network

has been defined, Orion enables visual exploration using tabular, matrix and node-link views. Networks

can also be exported for use in other analysis tools.

The rest of the paper is structured as follows. After reviewing prior work, we describe our data model

and present the Orion interface. Next, we discuss our enabling algorithms for network extraction and

describe our workflow language. As a preliminary evaluation of Orion, we demonstrate its use in case

studies of online health communities, electronic medical records, academic collaboration and distributed

software development. We then discuss future work and conclude.

This article is an extended version of an earlier publication [14] and features more network operators,

further details on our workflow language, and an additional case study. This version also includes an

appendix with implementation and evaluation details for our foreign key identification algorithm.

2 RELATED WORK

Orion draws on related work in graph visualization, analysis tools, and data management. We discuss

selected relevant projects below.

2.1 Graph Visualization Techniques

Researchers have devised a variety of visualization techniques for networks [18]. Two common represen-

tations used in social network analysis are node-link diagrams (typically using force-directed placement)

and adjacency matrix views [9]. Hybrids of the two have also been proposed [16, 17]. These approaches

organize elements according to the linkage structure of the graph.

An alternative approach is to plot network data according to the attributes of the nodes (e.g., [32, 38]),

as in a scatter plot or so-called “semantic substrates” [32]. Network links can then be drawn between

nodes. This approach is well-suited for assessing potential correlations between node attributes and net-

work structure.

In a related vein, PaperLens [25] uses multiple coordinated views of network attributes to explore

3

Online Submission ID: 0

publication databases. The NetLens system [24] generalizes this approach to support networks that fit a

“content-actor” data model, i.e., bipartite networks such as publications and authors. In contrast, Orion

supports an arbitrary number of linking relationships both within and between data tables.

Others have researched means of dealing with large graphs in excess of tens of thousands nodes.

Common strategies include filtering and aggregation. van Ham and Perer [36] introduce a degree-of-

interest function [7] that reduces a graph to a small connected subset of nodes based on a set of foci

(e.g., search results). PivotGraph [38] and Honeycomb [37] aggregate networks by “rolling up” edges

according to node attributes; e.g., an analyst can collapse a social network of corporate employees to

show the summed connection strengths between workers’ geographic locations. ManyNets [6] enables

comparison among multiple networks using a tabular view of summary graph statistics. If desired, users

can still view standard (albeit less scalable) node-link diagrams on demand.

Orion draws on this prior work: it provides both node-link and matrix visualizations and supports

network aggregation based on node attributes. However, with the sole exception of NetLens [24], each of

the above systems assume a well-defined network is given as input to the tool. None of these tools help

the user define and assess a variety of network models derived from arbitrary data tables.

2.2 Network Analysis Tools

Recent years have seen a proliferation of network analysis tools. Many of these tools combine visualization

and statistics within an interactive environment [1, 8, 28, 30, 33]. Others are programming libraries [20,

21, 26] or menu-driven interfaces [3, 35] that provide access to analysis algorithms. While these tools

support data import from common file formats (e.g., GraphML) and external data services (e.g., Twitter or

Facebook), they do little to facilitate the flexible construction of network models from arbitrary data tables.

Orion is not intended as a replacement for these systems; rather, it is designed to assist the unsupported

early stages of network analysis. In the process, it enables the use of these downstream tools.

2.3 Managing Graph Data

Another domain of related work is graph data management. Database researchers [2, 11] have developed

storage strategies and query languages [11] for large networks. Similarly, a number of commercial sys-

tems — including neo4j, InfiniteGraph, AllegroGraph, DEX, OrientDB, and sones/GraphDB — are now

4

Online Submission ID: 0

available. These systems facilitate storage, indexing, and querying of large graphs, but with goals dif-

ferent from Orion. Representative applications include managing social network web sites and querying

motifs in biological networks. Orion instead supports the construction and assessment of network models

from source data.

2.4 Interactive Data Transformation and Querying

Orion focuses on transforming data to create network models. In a related vein, other research systems

have been designed to assist the early stages of data cleaning and reformatting. Google Refine [19] and

Data Wrangler [22] enable analysts to reformat input data sets and correct data errors prior to analysis.

D-Dupe [23] assists the process of finding and resolving duplicates within a data set. Any of these tools

might be used to prepare data tables prior to network modeling with Orion. Similar to Wrangler, Orion

produces as output not only data, but also a declarative transformation script that can be reapplied to new

data and inspected to review data provenance. In this light, Orion can also be understood as an end-user

programming tool for network manipulation.

Orion was particularly influenced by the Polaris system [34], now commercialized as Tableau. Polaris

maps drag-and-drop operations of data variables into a formal algebra from which both database queries

and resulting visualizations are derived. One key insight from this work is the value of deeply coupling

visualization tools with rich facilities for data transformation. Orion similarly provides a user interface in

which user actions are mapped to statements in an underlying data transformation language. While Polaris

enables filtering and aggregation operations over a single data table, Orion instead enables manipulation

of multiple tables, including linking relationships realized as relational joins.

The two systems most similar to Orion are Gilbert & Auber’s work on automated graph generation

[10] and Liu et al.’s Ploceus [27]. Both of these systems enable analysts to extract network models from

tabular data and visualize the results. Gilbert & Auber [10] analyze the relationships among table columns

to infer a hierarchy of values (e.g., Continent, Country, City). They present an interactive visualization

of these hierarchies with which users can select a desired network model that links entities according to

shared column values. However, the system only operates on a single table. Ploceus [27] enables users

to similarly extract networks based on shared properties and provides a suite of filtering, aggregation and

5

Online Submission ID: 0

subdivision operations. Like Orion, Ploceus defines most of its operations using relational algebra and

includes support for multi-table joins. However, Orion provides more sophisticated subdivision methods

and is unique in providing mixed-initiative support for network construction: Orion can automatically

infer foreign key relationships and recommend possible network models for requested node types.

3 DATA MODEL

A variety of data models exist for handling graph data; common structures include adjacency lists and ad-

jacency matrices. However, these representations alone are insufficient for network analytics, as in many

cases networks must be derived from a prior data source permitting a number of models and parameteri-

zations. As a simple example, a social network extracted from an email archive might include links only

between senders and recipients, or might include links among all co-recipients.

Prior research on visualization toolkits has noted the value of representing networks as relational tables

[12]: each row represents an edge in the graph, and columns contain source and target node values among

other edge attributes. This format provides a sparse representation of the network, enables easy querying

of attributes, and supports efficient edge iteration. On the other hand, this format is inefficient for path

following and is thus ill-suited for many graph algorithms. As a result, we adopt a hybrid data model in

Orion.

We use relational data tables as our base representation. Tables can represent individual node types

or linking relationships. At times, node types may be implicit within the attributes of a table; Orion

provides methods to promote these values to their own table. Networks can be inferred from the foreign

key relations among tables. This design allows us to support arbitrary node types and linking relations

while facilitating integration with relational databases.

Once a specific linking relationship has been chosen (as described in subsequent sections), Orion

models the network using a specialized edge table format. Source and target columns represent incident

nodes using zero-based integer indices. For efficient processing, these indices default to the row index in

the corresponding node table. This scheme works well for edges involving a single node table, but leads

to index collisions among different tables. To ensure distinct keys we bias the indices for a given table by

the total size of any previous tables. The mapping from node tables to index ranges is stored as metadata

6

Online Submission ID: 0

for the edge table.

Some graph analysis routines, such as force-directed layout or clustering coefficient calculation, can

be performed by simply iterating over edges. However, other methods — including shortest path and

betweenness centrality algorithms — must traverse the graph by following paths. Accordingly, our edge

tables support the construction and caching of adjacency lists, represented as an array of sorted integer

arrays for in-links, out-links or both.

This integer-based representation provides multiple benefits. In particular, it allows rapid access of

associated node data via index-based table lookups and facilitates the creation of efficient network analysis

routines. Representing nodes as zero-based integers enables the use of simple arrays to keep state within

graph algorithms, avoiding the overhead of associative data structures.

Our data model, like the rest of Orion, is implemented in the Java programming language. We have

implemented our own data structures and processing routines, but our data model was intentionally chosen

to correspond to those used by modern analytic databases and scalable network analysis packages (e.g.,

[26]). In future work, we want to exploit this correspondence to implement our workflows on massively

scalable platforms. We use relational operators for as much of our workflow as possible so that we can later

leverage shared-nothing parallel databases. That said, we will show shortly that our own implementation

already scales to networks involving millions of elements, and so supports a broad class of data sets.

4 THE ORION USER INTERFACE

With the Orion user interface, analysts can import source data from multiple formats, specify a variety of

network models, compute statistics, and visualize the results. Analysts can then export either the resulting

data or a declarative script defining the transformation workflow. In this section, we first describe the de-

sign of the Orion interface through a concrete usage scenario. We then provide more detailed descriptions

of Orion’s user interface components.

4.1 Usage Scenario

Consider the real-world example of a researcher studying online health communities organized around

medical conditions (e.g., asthma, lupus, lyme disease, etc). Driving questions include: How do community

dynamics and structure vary across conditions? Can we gain new insights from the co-occurrence of

7

Online Submission ID: 0

Figure 1: The Orion User Interface, consisting of (a) a schema viewer for manipulating data tables and (b)

a linker interface for creating network models. Analysts drag-and-drop desired node types to the linker

and Orion responds with (c) a table of possible linking paths. The (d) preview display shows the resulting

network data. Analysts can also specify (e) aggregation, (f) filtering, and (g) splitting (subdivision) criteria.

symptoms and conditions? To explore these questions, our analyst collected over 3 million discussion

posts from MedHelp.org, a public online health site. The initial database consists of a single table where

each row represents a post on the site. Table columns include a forum (community) name, the user name

of the poster, the post date, the title of the discussion thread, and the post text.

From this data, the analyst would like to analyze the social networks of the individual communities.

She begins by importing the data table (a large CSV file) into Orion. The table and its columns are

displayed in the Schema Viewer in Figure 1a.

Next, she must define the entities of interest that might form the nodes of her graph. Currently, these

entities reside implicitly as values within the table. The analyst right-clicks the username field and selects

“Promote” in the resulting context menu. This operation causes all username values to be extracted from

the table: a new table is constructed with one row for each unique user and the username field in the

original table is replaced with a foreign key referencing the new table. As the analyst wishes to model a

8

Online Submission ID: 0

social network based on co-participation within a discussion thread, she similarly promotes the thread id

field as an entity of interest.

The analyst would now like to construct a social network among users. She drags the id field (the

primary key) from the username table and drops it on the Linker interface in the center of the Orion

window (Figure 1b). The interface allows analysts to specify desired source and target node types. In

response, Orion calculates all feasible network definitions involving username entities as nodes (Figure

1c). In this case, there is only one feasible result: linking users by shared threads. Should the analyst wish

to consider alternatives, she could promote other entities (e.g., individual forums).

When the analyst clicks the check box to include the linking path, Orion responds by showing a preview

of the resulting graph (Figure 1d). Orion previews include both a list of tables that will be generated, and

an inspector for individual table values. For now the analyst would like to limit her exploration to a single

community. She drags the forum field from the Schema Viewer to the Filter region of the Linker; she

then selects the “Asthma” forum using the resulting search box (Figure 1f). The preview updates in turn.

Satisfied, the analyst clicks the “Create Network” button to add the network to the data set; the Schema

Viewer updates with a new edge table containing links between all posters to the “Asthma” forum who

have posted to the same thread; by default, edge weights indicate the number of shared threads between

two users.

By right-clicking the “Asthma” edge table, the analyst reveals additional options. She can choose

to visualize the network using both matrix and node-link diagrams. In a matrix overview (Figure 2a),

the disjoint structure of the community becomes evident which suggests that newcomers arrive into the

community, ask a question, and it gets handled by one of a handful of leaders. This also suggests that

the community may serve as an “answer mill” rather than a place of prolonged discussion. The analyst

can dig deeper by filtering the visualization to only show a highly active cluster and pivots to a node-

link visualization (Figure 2b). Here, with nodes sized by their post count and colored according to their

betweenness centrality, the analyst can focus on specific nodes of interest for further analysis.

Individual tables can be inspected and visualized using bar or scatterplot charts. Each visualization

also supports interactive filtering controls. After filtering the graph to highlight interesting patterns, the

analyst can save the filtered edge table as an additional entry in the Schema Viewer. The analyst can also

9

Online Submission ID: 0

Figure 2: Orion Visualizations of Online Health Communities. From left-to-right: (a) A sorted matrix

view of an online asthma forum. A few central leaders divide up responses among incoming questions.

(b) Node-link diagram of highly active cluster of the same forum. (c) Plot of betweenness centrality

values for two different network models, sized by number of posts. The models have similar centrality

distributions.

compute statistics, including node degrees, betweenness centrality and clustering coefficients. Statistical

operators add additional columns to the implicated edge and/or node tables.

Now the analyst would like to assess the effects of using a different network model. The current model

includes edges connecting all posters to the same thread. What happens if instead thread respondents are

connected only to the thread initiator? The analyst follows the same modeling path as before, but this time

adds a join predicate: she right-clicks the linking path of the network and chooses to filter how the ohc table

is linked to itself. In this particular data, a poster has a post id of 0 if they initiated the thread and a post id

greater than 0 if they responded to the thread. As these data characteristics are specific to this particular

community data, the analyst enters a customized formula in the resulting dialog: INT1(‘post id’)==0

&& INT2(‘post id’)>0

The formula ensures that the source node always corresponds to the thread initiator and that the target

node is a respondent. The analyst creates this network, computes betweenness centrality values, compares

values for the two models in a scatter plot (Figure 2c) and notes a high degree of correlation. She decides

to proceed with the simpler model connecting only initiators to respondents.

The analyst would now like to start comparing the various health communities. She revisits her previ-

ous steps, but instead of filtering the forum field, she drags it to the Split region. The preview display then

10

Online Submission ID: 0

shows entries for multiple networks – one for each forum. Upon completion, these networks are grouped

together within a subtree of the Schema Viewer. Context menus for the grouping element enables batch

invocation of statistics for all contained networks (see Figure 13 for an example). The analyst can now

continue analyzing the diverse characteristics of health communities.

4.2 User Interface Design

The previous scenario illustrates a subset of the modeling and visualization functionality supported by

Orion. We now describe the user interface components in more detail. Along the way, we outline addi-

tional functionality, such as the ability to merge multiple sets of edges and construct “roll-up” graphs via

node aggregation.

4.2.1 Schema Viewer

The Schema Viewer (Figure 1a) provides an overview of all data tables in the current data set and supports

data manipulation. Source data tables and generated edge tables are indicated by icons. Table attributes

are displayed using icons indicating their data type, with special annotations for primary and foreign key

fields. Context menus enable analysts to rename and remove both tables and columns, create derived

columns using an expression language, specify primary keys, and promote values in one or more columns

to new node tables. Analysts can also access statistics and visualization options via context menus. Drag-

and-drop interactions allow analysts to specify foreign key relations (by dragging a field on to a primary

key with a matching type), import data (by dragging external data files from the operating system), and

querying for network models (by dragging fields to the Linker interface).

4.2.2 Link Specification

The Linker interface (Figure 1b) is the primary means of defining networks. Analysts start by dragging

desired node types to fields for source and target nodes. Orion responds by computing the possible linking

paths between the source and target nodes and displays the results in a table. Users can select the resulting

paths to include those edges within the resulting network model.

Filtering. Analysts can drag-and-drop fields to specify filtering criteria (Figure 1f). Filters can be

created for any table involved in the network. Orion generates dynamic query widgets — selection lists

11

Online Submission ID: 0

Figure 3: Network splitting operations supported by Orion. From left-to-right: (a) subdivision by category,

(b) sliding windows, (c) anchored windows and (d) subgraph extraction.

and range sliders — based on the data type. Corresponding predicates are then applied during network

construction to limit the nodes and edges included in the final graph. In addition to single table predicates,

analysts can specify filtering criteria directly on joins. Filterable joins are presented in a context menu

when an analyst right clicks a linking path. Currently, Orion only supports user-defined join predicates

specified as Java code statements.

Splitting. An alternative to filtering is to split a network into a collection of subgraphs. Examples

include inspecting time slices and splitting on categorical variables (e.g., health forums). To specify sub-

division criteria, a user first drags a node or edge field to the Split region (Figure 1g). Orion then displays a

widget enabling further parameterization (Figure 3). Networks generated by splitting appear in the Schema

Viewer as grouped collections that support batch operations.

Orion supports splitting by categorical variables to create separate networks that isolate a given node

or edge attribute value. For quantitative and temporal attributes users can specify window functions; both

sliding windows (which sequentially cover a domain) and anchored windows (which extend from fixed

reference bounds) are supported. Of course, not all such splits are useful: naı̈vely splitting on a node’s

primary key results in a collection of singleton graphs. In this special case, Orion instead interprets the

split as a request for subgraphs centered at each node and provides a graph distance control. Analysts can

extract all nodes and edges within a specified graph distance to isolate egocentric networks. For example,

a distance of 1.0 includes all neighbors, a distance of 1.5 includes all neighbors and edges between them,

a distance of 2.0 includes all nodes within two hops, and so on.

12

Online Submission ID: 0

Rollup. When specifying desired node types via drag-and-drop, typically the primary key of a node

table is used. If analysts instead drag-and-drop a non-key field, an aggregated network will be constructed

that uses the unique field values as individual nodes (c.f., PivotGraph [38]). The underlying nodes are

grouped according to the requested field; edges between groups are tallied to provide an aggregate repre-

sentation of the underlying graph.

Multiple Edge Sets. By selecting multiple linking paths, Orion allows analysts to construct networks

with multiple edge sets. When multiple paths are selected, the linking interface enables controls for

choosing an aggregate function for merging edge sets (Figure 1e); options include basic logical (or, and)

and arithmetic (count, sum, product) operations. For arithmetic operations, analysts can also provide

numerical weights for each edge set.

Preview & Confirmation. As analysts manipulate settings within the linker display, a preview panel

updates in response (Figure 1d). Analysts can review the number and size of all tables generated, and

inspect the values of individual tables. Once an analyst is satisfied with the linking definition, they can

click the ‘Add Network’ button to add all resulting tables to the Schema Viewer.

4.2.3 Visualization

Orion also supports visualizations: table displays, basic data graphics (bar and scatterplot charts), node-

link diagrams, and matrix views (see Figure 2). Visualizations are shown in a separate window with

different visualization types accessible via tabbed panes. These windows include a schema viewer showing

only the data tables implicated in the current visualization. Orion uses the Java implementation of the

Protovis specification language [13] to generate these visualizations.

Analysts can parameterize a display using filtering, sorting, zooming, and visual encoding controls.

Node-link diagrams use a force-directed layout algorithm based on a physical simulation. Matrix rows

and columns can be sorted by node attributes or by linkage to hunt for patterns within the data. Layout

and sorting facilities are included among the analytic operators described in §6.5. As our interactive

data transformation methods constitute the primary contributions of this paper, we leave consideration of

additional visualization facilities to future work.

13

Online Submission ID: 0

5 NETWORK DEFINITION AND EXTRACTION

Having introduced the Orion interface, we now discuss some of the underlying algorithms enabling inter-

active network modeling. While relational tables provide a flexible model for representing data, network

extraction involves creating linking queries that regularly include one or more join operations. As a result,

defining networks via a query language such as SQL can be tedious and error-prone. To simplify the

process, Orion models the connections among data tables and analysts request networks simply by spec-

ifying the desired node types. The system then enumerates the possible network definitions, from which

an analyst can choose.

We describe the steps of this process in the following subsections. First, we construct a linking graph

that models the foreign key relations among tables. In response to user queries (i.e., desired node types),

we then run a search algorithm over this graph to identify valid linking paths. Linking paths are then

translated into relational algebra statements for extracting network edge tables.

5.1 Linking Graph Construction

To aid network definition, Orion builds a linking graph: a data structure that supports user queries over

possible network models. Nodes within a linking graph correspond to data table fields (columns); primary

key fields are assumed to represent a specific node type. Edges in the graph represent relationships among

fields (e.g., foreign key references) that might be used to define a network among node types. Given input

schemas for a set of data tables, Orion constructs a directed graph containing three types of edges:

1. Key reference (R) edges link all primary and foreign keys representing the same node type.

2. Intra-table (T) edges link all foreign keys within a table. The edges represent potential linking paths

between node types.

3. Conjugate (C) edges link a foreign key F of one node type to a primary key P of a different node

type if and only if the table containing F has an additional foreign key that references P.

While the first two edge types are straightforward, conjugate edges merit further explanation. These

edges represent paths in which one can join a linking table with itself to form a unipartite graph — a

14

Online Submission ID: 0

Authors

Id
LastName
FirstName

Institutions

Id
Name

Links

AuthorId
PubId
InstId
AuthorNum

Publications

Id
Year
Title
Type
Venue
Abstract

(R) Key Reference
(T) Intra-Table
(C) Conjugate

Figure 4: Schema and linking graph for publications data. Primary keys are italicized. Links are styled

according to the edge type; links without arrows are bi-directional (R & T edges). The graph is a data

structure for finding all networks involving a pair of node types.

Query: Authors.Id×Publications.Id (ties between people and papers)

Authors.Id R−→ Links.AuthorId T−→ Links.PubId R−→ Publications.Id

⇒ πAuthorId,PubId(Links)

Query: Authors.Id×Authors.Id (social ties between people)

Authors.Id R−→ Links.AuthorId T−→ Links.PubId C−→ Authors.Id

⇒ πAuthorId,PubId(Links) 1PubId=PubId πPubId,AuthorId(Links)

Authors.Id R−→ Links.AuthorId T−→ Links.InstId C−→ Authors.Id

⇒ πAuthorId,InstId(Links) 1InstId=InstId πInstId,AuthorId(Links)

Figure 5: Example linking queries and results returned by Orion’s search algorithm. Linking path edges

are annotated by type: key reference (R), intra-table (T) or conjugate (C) edges. Paths are mapped to

relational algebra statements to extract network edge tables.

process analogous to multiplying a bipartite adjacency matrix by its transpose. Key reference (R) and

intra-table (T) edges are bidirectional; conjugate (C) relationships are unidirectional, from a foreign key

to a primary key with a different node type. Figure 4 shows the schema and linking graph for publication

data extracted from the ACM digital library.

5.1.1 Automated Key Finding

To facilitate accurate key assignments—and thus accurate linking graph models—Orion includes mecha-

nisms to automatically infer single-column primary and foreign key relations. To identify primary keys,

15

Online Submission ID: 0

the algorithm finds columns with distinct elements in each row and then ranks the candidates according

to data type (e.g., integers are preferred to strings or dates) and position (left-most columns — those with

a minimal index position — are preferred). The top-ranking result for a table is then chosen as the key,

though users are free to override this choice within the interface.

For a selected primary key, Orion identifies candidate foreign keys by first finding all table columns

with a matching data type. It then scores each candidate using a logistic regression classifier. The regres-

sion model includes the following features, where P is the primary key column, F is the candidate foreign

key column, dist returns a set of distinct column values, and lcs returns the longest common subsequence

within two strings:

fa =
|dist(P)\dist(F)|
|dist(P)| fb = 1− |{i :Fi∈dist(P)}|

|F |

fc =
|lcs(name(P),name(F))|

max(|name(P)|,|name(F)|) fd = |lcs(table(P),name(F))|
max(|table(P)|,|name(F)|)

In other words, candidate keys are classified using features concerning (a) how many distinct primary

key values occur in the candidate column, (b) how many elements in the candidate column occur in the

primary key column, (c) the similarity of the column names for the primary and candidate keys, and (d)

the similarity of the primary key table name to the candidate key column name. We trained our classifier

on a corpus of test data, including all examples in this article. Our classifier achieves an accuracy of 98.9%

using cross-validation tests. More details about our classification approach, including additional features

and evaluation methods, are provided in the appendix.

5.2 Linking Path Search

Given a linking graph and desired source and target fields (node table primary keys), Orion searches the

graph to identify valid linking paths. These paths can be translated into relational algebra statements (e.g.,

projections and joins) to create a network edge table.

Orion’s path-finding method (Algorithm 1) performs a breadth-first traversal starting from the source

field. The traversal algorithm allows repeated visits to a node, but greedily prunes the search at each step

by testing the validity of candidate path segments. For a given path segment path, we denote the most

recently added field by u, the previously added field by t, and a newly encountered candidate field by v. All

fields have a corresponding base field indicating the node type: primary key fields reference themselves,

16

Online Submission ID: 0

while foreign key fields reference a primary key. With these definitions in place, valid paths are defined by

the following conditions, which roughly correspond to the boolean variables a, b, c, d within Algorithm 1:

1. Excluding source and target fields, paths can not contain the same base more than twice.

2. The same base field can not occur three times consecutively unless u and v are in the same table.

3. Three consecutive fields can not be from the same table, unless the third field is reached by a key

reference edge (R).

4. A field reached through a conjugate edge (C) can not be added to a path unless (a) t and u are in the

same table and (b) t and v share the same base field, which differs from that of u.

The algorithm returns a set of valid linking paths with which an analyst can define a network model.

To simplify the results, the algorithm culls paths that are identical to a previously found path if reversed.

In addition, Orion sorts the returned paths such that shorter paths with less variation in base field types are

listed first.

5.3 Network Extraction

Once an analyst has selected a set of desired linking paths, Orion translates these paths into relational

algebra statements that when evaluated provide a network edge table. Figure 5 provides examples of input

queries and the resulting linking paths and relational algebra statements (using the data and linking graph

in Figure 4).

Mapping paths to relational algebra is straightforward. In most cases, each pair of fields (ignoring

source and target fields) maps to two columns of the same table, with adjacent pairs related by an equijoin

on the shared inner field. The special cases are conjugate edges, for which an encountered pair is instead

joined against itself, and “self-edges” within a table that result in an odd number of path elements (e.g.,

tree data with paths of the form T.P R−→ T.F R−→ T.P).

When an analyst selects a network definition, Orion executes the resulting queries and constructs an

edge table with integer node indices (§3). Orion similarly turns filtering criteria specified in the user

interface into relational selection predicates that are incorporated into the queries. If an analyst selects

multiple linking paths, Orion will construct multiple edge tables. Orion then forms the union of these edge

17

Online Submission ID: 0

Algorithm 1 FindPaths(source, target)
maxOccurrences← source = target ? 3 : 1

paths←{}

queue← new Queue([source])

while queue is not empty do

path← dequeue(queue)

len← length(path)

t← len < 2 ? null : previous(path)

u← current(path)

for all e ∈ edges(u) do

v← v : v ∈ e∧ v 6= u

a← |{n ∈ path : sameBase(n,v)}|> maxOccurrences

b← sameBase(t,u,v)∧ (len > 2∨¬sameTable(u,v))

c← type(e) 6= R∧ sameTable(t,u,v)

d← type(e) =C∧¬(sameTable(t,u)∧ sameBase(t,v))

if ¬(a∨b∨ c∨d) then

newPath← append(copy(path),v)

if v 6= target then

enqueue(queue,newPath)

else if reverse(newPath) 6∈ paths then

paths← paths∪{newPath}

end if

end if

end for

end while

return path

18

Online Submission ID: 0

Operator Description

Read Import a data table or network.

Write Export data table(s) or network.

Rename Rename a field, table, or network.

Key Set primary key status for a field.

Reference Add a foreign key reference from one field to another.

Remove Drop a field, table, or network.

Derive Define a new field according to a user-defined function.

Rank Add sort indices ordered by field values.

Promote Extract field values to a new node table.

Link Extract a network defined by one or more linking paths.

Filter Filter nodes or edges of a network according to a predicate.

Subgraph Extract subgraph within a given distance of a set of focus nodes.

Split Segment a network by field values (e.g., categories, time slices).

Rollup Create an aggregate graph according to node field values.

Stats Compute a given network statistic and store as a new field.

Layout Compute spatial coordinates for nodes using a layout algorithm (e.g., force-directed placement).

Table 1: The Orion Workflow Language.

tables; analysts can further specify aggregation functions in the Orion user interface to control if and how

multiple edge sets should be merged.

6 ORION WORKFLOW OPERATORS

In addition to transforming data, one goal of Orion is to enable the construction of editable and reusable

analysis workflows. These workflows are realized in a declarative language incorporating both relational

operators and network statistics. By mapping user interface actions into statements in this language, Orion

supports not only data manipulation and visualization, but can also export reusable scripts that keep a

record of data provenance. In this section we describe the operations supported by our language and how

they can be used to model and analyze network data.

Each Orion workflow task is an operator accepting one or more named parameters. These operators

modify a data set: a collection of named tables. A workflow is simply a sequence of tasks. Figure 6 shows

19

Online Submission ID: 0

an example workflow for the case study in §7.1. Orion externally represents workflows using a simple

XML format. Table 1 summarizes each of these operators.

6.1 Data Import and Export

Orion’s input / output operators read in data from different sources and write results in a variety of formats.

The read operator imports data tables from external sources such as delimited text files (e.g., comma- or

tab-separated values), relational databases, and GraphML or Dot (GraphViz) network files. Network files

are translated into tables, typically one node table and one edge table. For delimited text files, Orion infers

column data types based on their contents. The write operator writes either individual tables or extracted

networks to a database or files in these same formats.

6.2 Schema Modification

Orion includes a handful of operators for modifying table schemas. The rename operator renames tables or

individual columns. The key operator indicates that a column serves as a primary key, while the references

operator assigns foreign key relations. Foreign key relations are particularly important, as they are used as

the basis for determining feasible linking paths. While tables pulled from relational databases often have

the appropriate key relations defined in their schemas, data in common formats such as CSV regularly lack

this metadata. To add this metadata, our key finding algorithm (§5.1.1) generates a sequence of key and

references statements.

6.3 Table Transformation

To aid the creation of network models, Orion provides operators for manipulating single tables. The re-

move operator simply drops a column or table. The derive operator allows analysts to create new columns

by writing a user-defined function over existing columns. Orion currently accepts user-defined functions

as snippets of Java code that are dynamically compiled at run-time.

6.3.1 Ranking Table Rows

The rank operator adds a new column containing rank-ordered integer indices. Rank statements must

include sorting criteria: one or more fields to sort in ascending or descending order. The sort order

determines a set of non-repeating indices. Statements can also take group-by fields; each group is then

20

Online Submission ID: 0

rank-ordered separately. The rank operator can be used to create indices enabling nuanced join predicates

(e.g., the post id field used in the scenario of §4.1).

6.3.2 Promoting Column Values to Node Tables

Tabular data often contains implicit linking relationships via values embedded in a column. For example,

a single table of research grant awards might contain fields for a principal investigator (PI), a co-PI, and

the institutions of each. From this data one may wish to form social networks of researchers and/or

institutions. To help model such networks explicitly, Orion provides the promote operator. Given one or

more field names, the promote operator first identifies and counts all distinct values in those columns and

then populates a new table with the schema (id,value,count). Values in the input table are replaced with

foreign key references to the new “promoted” table. This operation allows analysts to extract implicit node

types into explicit node tables. Returning to the grants example, an analyst might promote the PI and co-PI

columns to create a new node table for people; the original table now serves as a linking table defining a

network among people nodes.

6.4 Network Modeling

At the core of the Orion language are network creation operators.

6.4.1 Network Definition

Given a set of linking paths as input, the link operator extracts a network (edge table) according to the

process described in Section 5. All input linking paths must have the same starting and ending fields. If

multiple linking paths are provided, the link operator will construct a single edge table that is the union

of the per-path edge tables. The resulting table includes a path id column indicating which linking path

generated a link. If an optional aggregation parameter is provided, the operator will generate a final edge

table by applying an aggregate function over a group-by of the source and target columns; the aggregate

values then become the edge weights.

The link operator also accepts optional projection and filtering parameters. Projection parameters

consist of node or linking table columns to include across joins (as if included in a SQL SELECT clause).

Filter parameters are name-value pairs of table names and predicate functions. Both single-table predicates

21

Online Submission ID: 0

(for filtering either node or linking tables) and two-table predicates (for join predicates on linked tables)

are accepted. The link operator also accepts boolean parameters for suppressing self-links in unipartite

graphs and for ensuring that only distinct edges are considered in linking tables. The latter enforces pre-

aggregation of linking tables.

6.4.2 Sub-Network Extraction

Once a network has been created, Orion provides operators for extracting sub-graphs. For example, an

analyst may want to compare time-slices of an evolving network or various ego-centric networks extracted

from a larger social graph. The filter operator creates a filtered edge table based on a set of edge and node

predicates. Edges are removed if a node predicate returns false for any incident node.

Given a set of “focus” nodes, the subgraph operator returns a subgraph containing all edges within a

specified minimum distance. Orion measures graph distance by counting hops or summing edge weights.

In the future, we plan to also support the degree-of-interest extraction method introduced by van Ham and

Perer [36].

Orion also provides iterators that enable repeated invocation of an operator over a sequence of param-

eter settings. Iterators are useful for performing batch operations, such as repeated filtering or subgraph

extraction. We use iterators to implement a split operator that can segment networks according to cate-

gorical or numerical fields. For numerical data columns, analysts can choose to split a network using a

sliding window (e.g., to create separate time slices of a network) or an anchored window (e.g., to show

the evolution of a network over time) while specifying the bounds of interest. Iterators also enable batch

statistics calculation (see §6.5).

6.4.3 Network Aggregation

At times an analyst will be more interested in the aggregate properties of a graph than in leaf-node details;

given a social network, she may wish to view the aggregate connections among genders or cities. The

rollup operator aggregates edges according to specified properties of the nodes (c.f., [38, 37]). The rollup

operator generates an aggregate edge table and node tables for the node attributes.

22

Online Submission ID: 0

Workflow w = new Workflow();

w.add(Tasks.read("ohc")// load data file

...file("ohc.csv")

...type("csv"));

w.add(Tasks.promote("users") .// promote username field

...from("ohc")

...select("username"));

w.add(Tasks.promote("forums") // promote forum field

...from("ohc")

...select("forum"));

w.add(Tasks.link("cp") // create forum × forum network

...path("forums.id", "ohc.forum",

........"ohc.username", "forums.id")

...distinct(true));

w.add(Tasks.stat("cp") // calculate edge weight deviance

...field("dev")

...stat("edgeWeightDeviance"));

Figure 6: An example Orion workflow definition for the online health case study in §7.1. Here the work-

flow is shown as Java code; workflows can also be persisted using a simple XML format.

6.5 Network Analysis

Orion additionally provides network analysis algorithms. The stats operator computes one or more statis-

tics of a network and stores the resulting values in the corresponding node or edge tables. The statistics

operator is modular, allowing user-defined functions to be added to the workflow language. Currently

these functions must be written in the Java programming language and conform to a provided interface

definition. Supported statistics include in-degree, out-degree, betweenness centrality, eigenvector central-

ity, clustering coefficient, edge weight asymmetry, edge weight deviance, community identification, and

linkage-based sorting.

While many of these metrics are common to social network analysis, a few deserve special mention.

The edge weight asymmetry and deviance measures are inspired by van Ham et al.’s Honeycomb [37]

system. The former is simply the logged ratio of edge weights between corresponding anti-parallel edges

23

Online Submission ID: 0

in a directed graph. The latter calculates the amount an edge weight deviates from the expected value if one

assumes a uniform random distribution of total weight across the cells of the adjacency matrix. Deviance

can help identify edges with unexpectedly strong or weak strengths, particularly in dense aggregated

networks.

Community identification is performed via a greedy hierarchical clustering optimizing Newman’s

modularity metric [29]. Linkage-based sorting provides an integer sort order of nodes that attempts to

minimize the distance among connected nodes. We approximate this objective by seriating the nodes

using the cluster tree constructed by the community identification algorithm (c.f., [39]). The resulting

ordering is particularly useful for visualization purposes, such as permuting the rows and columns of an

adjacency matrix diagram to reveal clusters (c.f., [16]).

The layout operator is similar to the stats operator, but instead computes spatial coordinates for subse-

quent layout in a visualization. This operator currently supports force-directed layout only.

6.6 Summary

In summary, the transformations supported by Orion are realized in a declarative workflow language.

Saved Orion sessions are simply XML-serialized versions of this workflow, and so can easily be edited or

reviewed directly in a text editor. While the Orion interface enables rapid specification of these workflows,

we have also found that programmatic use of the workflow language (as in Figure 6) has greatly aided data

analysis in our research groups.

7 CASE STUDIES

We now present a collection of case studies illustrating how Orion has been applied to conduct network

analyses in multiple domains.

7.1 Online Health Communities

The scenario in §4.1 introduced an analysis of online health communities. In addition to comparing the

social networks of individual forums, our collaborating analyst is also interested in exploring the con-

nections between communities. Might cross-posting behavior provide insights into the comorbidity of

medical conditions? We demonstrate such a scenario using the Orion user interface.

24

Online Submission ID: 0

Figure 7: Matrix view of connections between online health forums. Edges are weighted by the number

of distinct cross-posters. The cells are then colored according to edge weight deviance.

To assess such questions, the analyst generates a network in which the nodes correspond to discussion

forums and edge weights indicate the number of distinct users who have posted in both forums. To

construct this network with Orion, the analyst promotes both the username and forum fields to node tables.

The analyst then requests a network with forum nodes as both the source and target. Orion suggests the

desired result: linking forums by shared users.

The analyst then runs the edge weight deviance statistic to calculate the degree to which edge weights

vary from the expected value (assuming a uniform random distribution). The resulting matrix diagram is

shown in Figure 7, with cells colored by deviance.

By inspecting both this matrix view and the sorted edge table, the analyst has flagged a number of un-

expected connections. Some connections appear to indicate possible data errors; for example, the hearing

loss forum has unexpectedly strong connections to many other forums. Other strong connections indicate

25

Online Submission ID: 0

interesting co-occurrences (e.g., cold/flu and stress, ear/nose/throat problems and heart disease) or com-

mon misdiagnoses (e.g., lupus and lyme disease). Orion has enabled her to make these observations in a

matter of minutes. The analyst is now following up on these results, for example by correlating them with

external comorbidity data.

7.2 Electronic Medical Records

In another case study, Orion is used to model the progression of a disease using data from Electronic

Medical Records. The goal of constructing such networks is to allow medical experts to better understand

the onset of symptoms in patient populations, hopefully resulting in speedier diagnoses and treatments.

In this case study, a team consisting of a computer scientist (the analyst) and four medical experts (one

cardiologist, two medical scientists who were formerly emergency room doctors, and one epidemiologist)

construct a network from over 3.3 million clinical notes involving 50,000 patients over 7 years to model

the evolution of heart failure (HF).

The analyst begins by loading the data tables using the File menu in the Orion UI. The analyst imports

an EMR table, where each row corresponds to a clinical event for an associated patient. The EMR table

only contains IDs of events and patients, so the analyst also imports a symptomDefinitions table that

contains associated metadata, such as the symptomName and symptomDate. In this dataset, all dates are

aligned by the diagnosis of heart failure, so negative dates imply events before a patient was diagnosed

with HF and positive dates imply events after diagnosis. The analyst also imports an additional patient

metadata table, patientDefinitions, that contains the patientType, which defines whether its a case patient

with HF or a control patient without HF.

The analyst then promotes both the patientIDs and symptomIDs fields to node tables. However, since

the symptom metadata is located in a separate table, the analyst creates a reference from the symptoms table

to the symptomsDefinitions table using Orion’s automatic key-finding algorithm. The analyst similarly

creates a reference between patients and the patientDefinitions table.

The analyst now wishes to create a network of symptoms when they co-occur among different patients.

The analyst also demands that the edges of this network have a weight equal to the number of patients that

experienced such a co-occurrence. To do this, the analyst requests a network with symptom nodes as

26

Online Submission ID: 0

Figure 8: Matrices of co-occurring symptoms extracted from electronic medical records of patients with

heart failure. The filtering constrains the symptoms to only those that appear prior to HF diagnosis.

both the source and the target, and selects the option to only count distinct patients when tabulating edge

weights. Orion then invokes its path-finding method (Algorithm 1) and presents the only path found:

[symptoms.id → EMR.symptomID→ EMR.patientID→ symptoms.id]. The analyst approves of this

path and generates the network. For each edge in the symptomNetwork, a new count field is automatically

created which allows the analyst to keep track of the number of unique patients who share the same co-

occurence of symptoms.

However, the analyst is only interested in how the symptoms co-occur up until the patient diagnosis,

and so filters the network to ensure that all date values are negative. The analyst then runs the linkage-based

order statistic to obtain a sort order for a matrix visualization that minimizes the distance among connected

nodes. The resulting networks (unfiltered and filtered) are then exported from Orion and visualized using

MatrixFlow [31], shown in Figure 8.

27

Online Submission ID: 0

Figure 9: Matrices of co-occurring symptoms, split by (a) anchored and (b) sliding windows of 3 month

intervals.

7.2.1 Temporal network analysis

Having generated an overview, the analyst now wants to understand how the co-occurrence network of

symptoms changes over time. Based on clinical background knowledge, the analyst wants to focus on 18

months leading up to the diagnosis of HF. Using Orion, analysts can model temporal networks by using the

Split operator to subdivide networks into time windows. The analysts chooses to split by symptomDate,

setting the lower bound to 18 months before diagnosis and the upper bound to the date of diagnosis. The

analyst performs two different types of splits using 3 month intervals: a binned network with sliding time

windows and a cumulative network with anchored time windows, as shown in Figure 9.

Ultimately, the analyst decides to generate separate networks for different patient cohorts. In this

dataset, there are three different types of patients: control patients who do not have HF, HF patients

with preserved ejection fraction (HFpEF) and HF patients with reduced ejection fraction (HFrEF). This is

particularly interesting to the analyst because there is currently a research debate about whether HFpEF

and HFrEF should be considered the same or different disease. The analyst then splits the network by the

patientType field. The three different patient cohorts are shown with anchored time windows in Figure 10.

Upon analyzing the networks generated using Orion, four medical experts confirmed novel temporal

28

Online Submission ID: 0

Figure 10: Matrices of co-occurring symptoms, split by an anchored time window and patient cohort.

patterns of the progression of heart disease. They found that Orion rapidly enabled data exploration in

ways that previously were prohibitively difficult; prior attempts required writing custom network model-

ing code for each new hypothesis. In fact, Orion’s provided features (e.g., splitting) sparked some of the

research questions that were explored. The experts are optimistic that such network analyses can even-

tually help clinicians make earlier diagnoses, due to the large variability in diagnoses among patients.

The ability to quickly compare and contrast different patient networks also provided novel evidence for

the HFpEF and HFrEF debate, as a similar temporal pattern is observed in both cohorts, which suggests

that despite the pathophysiological differences, both HF types seem to develop the same co-occurrence

patterns. The results of this analysis have led to a publication in a medical informatics conference [31], as

well as a pending publication in a medical journal.

7.2.2 Multivariate network analysis

Inspired by the results of analyzing the symptoms network, the medical experts became curious about

how symptoms interact with diagnoses, medications, and lab tests. In response, the analyst creates a co-

29

Online Submission ID: 0

Figure 11: A network of the most commonly co-occurring clinical events extracted from electronic medi-

cal records of patients with heart disease.

occurrence network with the same approach described above, but instead uses an enhancedEMR table,

where each row corresponds to a clinical event for a specific patient (symptoms, diagnoses, medications,

or lab tests). Each event has eventType and eventDescription metadata. Akin to the technique above, the

analyst requests a network with event nodes as both the source and the target, and selects the option to

only count distinct patients when tabulating edge weights. As shown in Figure 11, the resulting network is

then exported from Orion and styled using D3 [5] for publication. The network was further filtered using

D3 to show only the most common event co-occurrences. All nodes in the image are either diagnoses

or symptoms. The other types of events (lab tests and medications) do not co-occur often enough to be

present in this graph.

Surprised by the domination of symptoms and diagnoses, the analyst wonders how certain types of

events co-occur with each other on the previous unfiltered network. To find out, the analyst uses Orion to

create an aggregate network, where nodes represent an eventType and edges are weighted with how many

times an eventType co-occurs with another eventType. By requesting a network with eventType nodes as

both the source and the target, Orion generates a rolled up aggregate network. In Figure 12, the network

30

Online Submission ID: 0

by Name

Figure 12: An aggregate network of clinical event types. The network was transformed using Orion’s

rollup operator, then exported and visualized with D3.

is rendered as a matrix where each cell is colored based on its edge count.

The medical experts are now in the process of making sense of the multivariate analysis in a clinical

context. The rapid ability to generate networks with temporal and multivariate features shows promise of

validating several features critical for disease diagnosis. The medical collaborators believe that Orion’s

expressiveness may help them gain a better understanding of heart disease.

7.3 Academic Production and Collaboration

We are also using Orion to explore academic production and collaboration networks; for example, §5.1

discusses data extracted from the ACM Digital Library. To inspect the career progress of computer sci-

entists, we use Orion to construct a social network based on co-publication. Using Orion’s subgraph

extraction facilities (Figure 13), we define social networks over increasing periods of time (e.g., first all

publications up to 2000, then 2001, etc). We then batch compute betweenness centrality scores for each

extracted network. As Orion enables easy data export, we subsequently loaded the data into Tableau for

further analysis, leading to the plot in Figure 14.

31

Online Submission ID: 0

Figure 13: Using Orion to subdivide an ACM co-authorship network by publication date. The Split region

on the lower right provides controls for defining a filtering window; the Preview pane in the center lists

all resulting tables. When the networks are created, the Schema Viewer on the left groups the results to

support batch statistics calculation.

Figure 14: Time-sliced betweenness centrality scores for researchers in the ACM digital library. Centrality

scores are normalized per year. The data was generated in Orion and then exported to Tableau.

Orion’s flexibility also enables assessment of other models. For example, we have constructed the net-

work of all researchers who have published in the same venue (by promoting and linking on the publication

venue) within the same year (by specifying a join predicate enforcing matching years).

The ACM publication data contributes to a larger analysis initiative with social scientists at the first

author’s university. The scientists are studying academic collaboration and have collected multiple data

sets indicating links among university faculty. In addition to publication databases, the data include de-

partment and PhD committee memberships and co-PI relations on grants. These heterogeneous edge sets

can be combined and weighted in any number of ways to form a collapsed network. We are using Orion’s

32

Online Submission ID: 0

Figure 15: Matrix diagrams resulting from an Orion analysis of GitHub, a hosting service for open-source

software. (a) Raw counts of follower links between cities, sorted by geographic proximity (column nodes

“follow” row nodes on GitHub). (b) Follower links colored and sorted by asymmetry. (c) Followed links

colored by deviance from expected value, sorted geographically.

edge aggregation features to create and compare network models built from heterogeneous linking data.

7.4 Software Development on GitHub

Finally, we have used Orion in collaboration with computer scientists studying global development pat-

terns in open-source software. The data under investigation comes from GitHub, a web service that hosts

open-source projects. Using the GitHub web API, the researchers have collected over 1,000,000 com-

mits and 500,000 explicit “follower” connections among roughly 50,000 users. In addition, each user’s

location has been geocoded according to a self-reported location string and then mapped to near-by major

metropolitan areas (see Heller et al. [15] for more details).

Using Orion, we can quickly generate and analyze networks extracted from this data. For example, we

have constructed social networks based on commit history: a link is included between two users A and B

if B makes a commit to the same repository immediately after A. We can specify this network in Orion by

linking users via a table of commits. We have as input two tables: one for users and another for commits.

The commit table includes the date, project name, and the user (as a foreign key). First we promote the

project (repository) name to its own table, then link users according to a shared repository. We limit links

to temporally adjacent commits by first applying a rank operation based on the commit date, and then

adding a join predicate that ensures that only adjacent ranks are included in the resulting network.

We can also construct networks of “who follows whom” by linking users using a table of extracted

33

Online Submission ID: 0

follower relations. By requesting the user location attribute as a node type (rather than the user id), we

construct an aggregated graph among major cities, with edge weights indicating the number of connec-

tions between users in those cities. We can then apply edge weight asymmetry and deviance statistics

to examine differences among various locales. Figure 15 shows selected matrix views from this analysis

(originally published in [15]). For example, in Fig. 15c we see that Paris and Tokyo each have many

fewer incoming “followed” links than would be expected if links were assigned randomly, and that San

Francisco consistently receives a surplus of “followed” links. While these particular images have been

stylized for publication using Protovis [4], the underlying analysis can be performed completely within

Orion.

8 CONCLUSION AND FUTURE WORK

This paper introduces Orion, a system for interactive modeling, transformation, and visualization of net-

work data. By providing a unified model, workflow language, and graphical user interface for iterative

network manipulation, the construction and comparison of networks empower analysts to be more ex-

ploratory and flexible in their analysis. Through case studies involving online health communities, aca-

demic collaboration networks, and global software development, we demonstrate how Orion supports the

visual analysis of multidimensional heterogenous networks.

While our case studies illustrate how Orion can be applied to real-world analysis tasks, each study was

conducted in the context of a collaboration between the analysts and ourselves. A necessary next step is

to evaluate how analysts use Orion without external assistance. User studies with representative tasks and

participants would certainly help surface usability issues and inform iterative design. However, we believe

the most important test will come from analysts independently applying Orion in their own work.

As analysts gain the flexibility to create new models and transformations of network data with Orion,

a critical need arises for better methods to preview and compare the constructed networks. While Orion

provides capabilities to support these tasks, we believe that providing even more sophisticated visual and

statistical techniques to summarize the similarities, differences, trends, and outliers of the resulting net-

works is an area ripe for future research. Additionally, while Orion provides great power for analysts to

model networks that match their hypotheses, the vast number of possibilities to construct a network may

34

Online Submission ID: 0

seem daunting. An interactive visual representation of Orion’s linking graph may assist users in under-

standing and specifying network models. Future work might also provide users with proactive automatic

suggestions to help uncover networks models with interesting and meaningful patterns.

ACKNOWLEDGEMENTS

The authors thank Diana MacLean, Sanjay Kairam, Brandon Heller, Eli Marschner, Jimeng Sun and

MedHelp for sharing data, and thank the anonymous reviewers for their suggestions. The first author

was supported by NSF Grant CCF-0964173 and The Boeing Company.

REFERENCES

[1] E. Adar. GUESS: a language and interface for graph exploration. In ACM CHI, pages 791–800,

2006.

[2] C. Aggarwal and H. Wang, editors. Managing and Mining Graph Data. Springer, 2010.

[3] V. Batagelj and A. Mrvar. Pajek – program for large analysis. Connections, page 47, 1998.

[4] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization. IEEE Trans Vis & Comp

Graphics, 15(6):1121–1128, 2009.

[5] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven documents. IEEE Trans. Visualization &

Comp. Graphics, 7(12):2301–2309, 2011.

[6] M. Freire, C. Plaisant, B. Shneiderman, and J. Golbeck. ManyNets: an interface for multiple network

analysis and visualization. In ACM CHI, pages 213–222, 2010.

[7] G. W. Furnas. Generalized fisheye views. In ACM CHI, pages 16–23, 1986.

[8] Gephi. http://gephi.org/.

[9] M. Ghoniem, J.-D. Fekete, and P. Castagliola. On the readability of graphs using node-link and

matrix-based representations: a controlled experiment and statistical analysis. Information Visual-

ization, 4:114–135, July 2005.

35

http://gephi.org/

Online Submission ID: 0

[10] F. Gilbert and D. Auber. From Databases to Graph Visualization. In Proc. International Conference

Information Visualisation, page 128, July 2010.

[11] H. He and A. K. Singh. Graphs-at-a-time: Query language and access methods for graph databases.

In ACM SIGMOD, pages 405–417, 2008.

[12] J. Heer and M. Agrawala. Software design patterns for information visualization. IEEE Trans Vis &

Comp Graphics, 12(5):853–860, 2006.

[13] J. Heer and M. Bostock. Declarative language design for interactive visualization. IEEE Trans Vis

& Comp Graphics, 16(6):1149–1156, 2010.

[14] J. Heer and A. Perer. Orion: A system for modeling, transformation and visualization of multidi-

mensional heterogeneous networks. In IEEE Visual Analytics Science & Technology (VAST), 2011.

[15] B. Heller, E. Marschner, E. Rosenfeld, and J. Heer. Visualizing collaboration and influence in the

open-source software community. In Mining Software Repositories, pages 223–226, 2011.

[16] N. Henry and J.-D. Fekete. Visually exploring large social networks. In INTERACT, pages 604–610,

2007.

[17] N. Henry, J.-D. Fekete, and M. J. McGuffin. NodeTrix: a hybrid visualization of social networks.

IEEE Trans Vis & Comp Graphics, 13:1302–1309, November 2007.

[18] I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and navigation in information

visualization: A survey. IEEE Trans Vis & Comp Graphics, 6:24–43, January 2000.

[19] D. Huynh and S. Mazzocchi. Google Refine. http://code.google.com/p/

google-refine/.

[20] igraph. http://igraph.sourceforge.net/.

[21] Jung. http://jung.sourceforge.net/.

[22] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interactive visual specification of data

transformation scripts. In ACM CHI, pages 3363–3372, 2011.

36

http://code.google.com/p/google-refine/
http://code.google.com/p/google-refine/
http://igraph.sourceforge.net/
http://jung.sourceforge.net/

Online Submission ID: 0

[23] H. Kang, L. Getoor, B. Shneiderman, M. Bilgic, and L. Licamele. Interactive entity resolution

in relational data: A visual analytic tool and its evaluation. IEEE Trans Vis & Comp Graphics,

14(5):999–1014, 2008.

[24] H. Kang, C. Plaisant, B. Lee, and B. B. Bederson. NetLens: iterative exploration of content-actor

network data. Information Visualization, 6(1):18–31, March 2007.

[25] B. Lee, M. Czerwinski, G. Robertson, and B. B. Bederson. Understanding research trends in confer-

ences using PaperLens. In ACM CHI Extended Abstracts, pages 1969–1972, 2005.

[26] J. Leskovec. SNAP. http://snap.stanford.edu/.

[27] Z. Liu, S. B. Navathe, and J. T. Stasko. Network-based visual analysis of tabular data. In Proc. IEEE

Visual Analytics Science & Technology (VAST), pages 41–50, 2011.

[28] Network Workbench. http://nwb.slis.indiana.edu/.

[29] M. E. J. Newman. Fast algorithm for detecting community structure in networks. Phys. Rev. E, 69(6),

2004.

[30] A. Perer and B. Shneiderman. Systematic yet flexible discovery: guiding domain experts through

exploratory data analysis. In Intelligent User Interfaces (IUI), pages 109–118, 2008.

[31] A. Perer and J. Sun. MatrixFlow: Temporal Network Visual Analytics to Track Symptom Evolution

during Disease Progression. In AMIA Annual Symposium Proceedings, Nov. 2012.

[32] B. Shneiderman and A. Aris. Network visualization by semantic substrates. IEEE Trans Vis & Comp

Graphics, 12:733–740, 2006.

[33] M. A. Smith, B. Shneiderman, N. Milic-Frayling, E. Mendes Rodrigues, V. Barash, C. Dunne,

T. Capone, A. Perer, and E. Gleave. Analyzing (social media) networks with NodeXL. In Com-

munities and Technologies (C&T), pages 255–264, 2009.

[34] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis, and visualization of

multidimensional relational databases. IEEE Trans Vis & Comp Graphics, 8(1):52–65, January 2002.

37

http://snap.stanford.edu/
http://nwb.slis.indiana.edu/

Online Submission ID: 0

[35] UCINET. http://www.analytictech.com/ucinet/.

[36] F. van Ham and A. Perer. “Search, Show Context, Expand on Demand”: Supporting large graph

exploration with degree-of-interest. IEEE Trans Vis & Comp Graphics, 15:953–960, November

2009.

[37] F. van Ham, H.-J. Schulz, and J. M. Dimicco. Honeycomb: Visual analysis of large scale social

networks. In INTERACT, pages 429–442, 2009.

[38] M. Wattenberg. Visual exploration of multivariate graphs. In ACM CHI, pages 811–819, 2006.

[39] L. Wilkinson. The Grammar of Graphics. Springer-Verlag, Secaucus, NJ, 2005.

APPENDIX: FOREIGN KEY IDENTIFICATION

To aid the construction of linking graphs, Orion includes facilities for automatically identifying foreign

keys. Given a primary key as input, Orion first identifies candidate foreign keys by finding all table

columns with a matching data type. It then scores each column using a logistic regression classifier. In

this section we discuss our training data, feature selection, and resulting classification performance.

Training Data: Multi-Table Database Corpus

To train our classifier, we first constructed an annotated corpus of multi-table databases. The corpus

consists of a collection of tables and corresponding primary and foreign key designations. We included all

the data sets discussed in this article, as well as other network and tree data sets. We collected additional

data from the web, such as the contents of the University of Washington XML data repository1. We wrote

a program which analyzes the structure of each XML file in this repository and extracts unique entities

(elements with multiple attributes) into their own relational table. The output is a set of data tables and

key relationships.

Our corpus comprises 9 data sets with a total of 50 data tables and 283 unique data columns. From

these, we extracted 467 feasible primary key / foreign key pairs by matching primary key columns with

all other columns of the same data type within a data set. We manually annotated each candidate key to

note if it is a true foreign key. Of the 467 candidates, 83 are foreign keys and 384 are not.
1http://www.cs.washington.edu/research/xmldatasets/www/repository.html

38

http://www.analytictech.com/ucinet/

Online Submission ID: 0

Feature Coefficient

Intercept -23.737 ***

fa =
|dist(P)\dist(F)|
|dist(P)| -1.559

fb = 1− |{i :Fi∈dist(P)}|
|F | 19.187 *

fc =
|lcs(name(P),name(F))|

max(|name(P)|,|name(F)|) 28.498 **

fd = |lcs(table(P),name(F))|
max(|table(P)|,|name(F)|) 27.742 **

fb ∗ fc -30.809 *

fb ∗ fd -24.871 *

fid = name(P) = “id”∧name(F) = “id” -33.532

Table 2: Logistic Regression Coefficients for a Foreign Key Classifier. Statistical significance: ∗ : p <

0.05, ∗∗ : p < 0.01, ∗∗∗ : p < 0.001

Foreign Key Classification

We used our annotated corpus to train a logistic regression classifier. We chose logistic regression due to

its interpretability, applicability to ranking in addition to classification and its good performance on our

data. We expect that a number of other classification approaches (e.g., Support Vector Machines) would

produce comparable results. We experimented with a variety of features and interaction effects. Here,

we present the model that provided the best classification performance while minimizing the AIC model

selection score, which balances model fit against the number of model parameters.

Table 2 presents our feature definitions and the resulting regression coefficients when trained on the

entirety of our corpus. Within our feature definitions, P corresponds to a primary key column and F

to a candidate foreign key column. We also use the following functions: dist returns a set of distinct

column values, lcs returns the longest common subsequence within two strings, name returns the name of

a column, and table returns the name of the table containing a column.

Our features provide normalized measures of the coverage of values between two columns and of

similarities among names. Feature fa counts how many distinct primary key values occur in the candidate

foreign key column. Feature fb concerns how many elements in the candidate column occur in the primary

key column. Feature fc measures the similarity of the column names, while feature fd measures the

similarity of the primary key table name to the candidate key column name. The interaction terms fb ∗ fc

39

Online Submission ID: 0

and fb ∗ fd penalize candidates that have similar names to a primary key but do not provide an adequate

coverage of values. Finally, feature fid discounts naming similarity when columns are simply named “id”,

a common occurrence in many database schema designs.

Performance

To test the performance of our classifier, we compared the predicted values of the model with ground truth

annotations using a cross-validation method. For each individual data set (table collection), we tested the

accuracy of a classifier trained using the other eight data sets. Thus in each round we tested on hold out

data not included in the training process.

Across all cross-validation folds, we find that we correctly classify 462 / 467 (98.9%) candidate keys.

Examining the five misclassifications, we see that one is a false positive and four are false negatives.

The false positive is caused by a significant (but misleading) degree of name similarity. For the false

negatives, there is little naming similarity and only partial coverage of primary key values by the foreign

key. As a result, the regression score fails to cross the threshold for positive classification. However, when

ranking candidate foreign keys by their regression score, these false negatives are rated highly within their

respective data sets – just below any true positives. As a result, the Orion UI can still surface these pairs

as top ranked suggestions, even though the classifier fails to correctly flag the candidates as true foreign

keys.

40

	Introduction
	Related Work
	Graph Visualization Techniques
	Network Analysis Tools
	Managing Graph Data
	Interactive Data Transformation and Querying

	Data Model
	The Orion User Interface
	Usage Scenario
	User Interface Design
	Schema Viewer
	Link Specification
	Visualization

	Network Definition and Extraction
	Linking Graph Construction
	Automated Key Finding

	Linking Path Search
	Network Extraction

	Orion Workflow Operators
	Data Import and Export
	Schema Modification
	Table Transformation
	Ranking Table Rows
	Promoting Column Values to Node Tables

	Network Modeling
	Network Definition
	Sub-Network Extraction
	Network Aggregation

	Network Analysis
	Summary

	Case Studies
	Online Health Communities
	Electronic Medical Records
	Temporal network analysis
	Multivariate network analysis

	Academic Production and Collaboration
	Software Development on GitHub

	Conclusion and Future Work

