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Abstract

Cohort analysis is a widely used technique for the investigation of risk factors for groups of people. It is

commonly employed to gain insights about interesting subsets of a population in fields such as medicine,

bioinformatics, and social science. The nature of these analyses is evolving as larger collections of data about

individuals become available. Examples of emerging large-scale data sources include electronic medical record

systems and social network datasets. When domain experts perform cohort analyses using such massive

datasets, they typically rely on a team of technologists to help manage and process the data. This results in

a slow and cumbersome analysis process in which iterative exploration is difficult. To address this challenge,

we are exploring technologies designed to help domain experts work more independently and more quickly.

This paper describes CAVA, a platform for Cohort Analysis via Visual Analytics. We introduce three primary

types of artifacts (cohorts, views, and analytics) and an architecture that connects these elements together

to provide an interactive exploratory analysis environment designed for domain experts. In addition to the

CAVA design, this paper presents two use cases from the healthcare domain and a domain-expert evaluation

to demonstrate the power of our approach.

1 Introduction

Cohort analysis is a common technique used in a variety of fields to study risk factors within population

groups. In fields as diverse as healthcare and ecology, the cohort study is a foundational tool that helps

experts uncover correlations between specific risk metrics and the underlying attributes of individuals within

the study population.

Cohort studies are often performed prospectively using techniques that are statistically mature and

powerful. However, the analytical process is often slow and expensive when collecting data prospectively.

Retrospective analyses, which use previously collected data are a possible alternative. Unfortunately, the use

of retrospective studies has been relatively limited due to the historical difficulty in collecting and analyzing

very large data sets. However, as more and more data becomes electronic, very large repositories suitable

for retrospective cohort analysis are becoming increasingly common. For example, large medical institutions

are now adopting electronic medical record (EMR) systems in increasing numbers. These data warehouses

can contain comprehensive historical observations of millions of people over time spans of many years.

The increasing availability of such data helps overcome the fundamental limitations of the retrospective

approach. In theory, domain experts can use this data to perform interactive, exploratory cohort studies

without the overheads associated with prospective techniques. In practice, however, interactive cohort stud-
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Figure 1: CAVA, shown here being applied to a population of cardiac patients, provides an interactive visual
analytics environment for iterative exploratory cohort analysis. Through CAVA, users can chain together
complex analysis pathways that combine interactive cohort refinements with automated analytics algorithms
in an ad hoc exploratory fashion.

ies exploring large scale retrospective data collections produce their own set of challenges. Data management,

analysis, and summarization all become more difficult and typically lead to the use of more advanced tech-

nologies. Instead of relying on a spreadsheet and some basic statistics, users must also use technologies such

as databases, data mining, and visualization tools to help make sense of the large scale of data they wish to

examine.

The end result is that domain expert users are still critically constrained. When new hypotheses are

developed, users no longer have to design a new prospective study. However, they now need to speak with a

team of technologists to perform data transformations, run data mining routines, and visualize the results.

This process can be both slow and expensive, and the domain experts are still unable to quickly perform

iterative and exploratory analysis on their own.

To help address this challenge, we have designed CAVA—a platform for Cohort Analysis via Visual

Analytics—which is designed to help domain experts work faster and more independently when performing

retrospective cohort studies. Motivated by the needs of real-world analysts working in the healthcare domain,
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CAVA follows a novel system design centered around three primary types of artifacts: (1) cohorts, (2) views,

and (3) analytics. Cohorts are CAVA’s fundamental data construct and represent a set of people and their

associated properties. Views are visualization components that graphically display a cohort and allow users

to directly manipulate or refine the underlying cohort. Analytics are computational elements that create,

expand, and/or alter the contents of a cohort. In this way, CAVA treats both Views and Analytics as

functional components which operate on an input cohort and produce an output cohort. Building on this

design principle, CAVA allows users to chain together complex sequences of steps that intermix both manual

and machine-driven cohort manipulations. This capability is provided through an easy-to-use, web-based

user interface that supports an interactive exploratory analysis environment for retrospective cohort studies.

This paper describes CAVA in more detail, beginning with a discussion of the user requirements we

identified in the healthcare domain that motivate our work. Then, after a brief review of related work, we

introduce the CAVA design and highlight how user requirements drove several key aspects of our approach.

We further demonstrate the utility of our approach by describing our prototype CAVA implementation

and introducing two use cases where CAVA was used to analyze data from a population of at-risk medical

patients. Finally, we conduct an evaluation to justify the usability and the applicability of our approach.

2 Motivating Scenario in Healthcare Domain

CAVA is designed to provide a general solution for interactive cohort analysis. However, the design decisions

embodied in CAVA are motivated by a set of real-world requirements distilled from our target domain:

healthcare population analysis.

Our work was originally inspired by a problem faced by a group of physicians, who together with a team

of technologists, were trying to uncover new insights about a population of cardiology patients being treated

at their institution by analyzing a collection of electronic medical data. Because the cardiologists work in

a relatively large medical organization, the doctors have access to longitudinal records from hundreds of

thousands of patients, each with tens of thousands of features. Many organizations have access to even more

data, often storing millions of patient records spanning decades of historical treatments.

As one would expect of highly trained domain experts, the cardiologists have extensive medical knowl-

edge and intimate familiarity with the various lab tests, diagnoses, and other pieces of information in the

dataset. Unsurprisingly, however, these same clinicians have relatively limited technology skills. For this

reason, a team of technologists—software engineers, database administrators, data miners and visualization

designers—work together with the clinicians to gather and transform data, build systems to perform analysis,

and present the results for discussion.
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The typical workflow is as follows: first the physicians propose several hypotheses; based on these hy-

potheses, a database expert prepares the necessary SQL queries and data transformation scripts to gather

data for the patient cohorts specified by the clinician’s hypotheses. Then, data analysts work with the

patient data to build models that process and extract additional information (e.g., risk scores) about the

patients in the cohorts. Then, finally, the analytical results are visualized for the clinicians who re-engage

to see if the data supports their hypotheses.

Of course, the clinicians’ hypotheses may be wrong. Therefore, this process is typically repeated itera-

tively as doctors explore new alternatives: “There were only 10 patients in that group? What if we change

constraints?” “What about women, do they have a similar distribution?” “What risk scores do these pa-

tients have for other conditions?” “Are there more patients like these and do they have similar outcomes?”

Moreover, even when hypotheses appear to be correct, they often lead to a large number of followup ques-

tions. Therefore, nearly all hypotheses eventually result in additional work for the team of technologists who

diligently work to help answer the clinicians’ subsequent questions.

As one can see from this iterative workflow, the reliance on technology professionals as intermediaries

can result in a slow and cumbersome process. Ideally, clinicians would be able to independently conduct

ad hoc exploration and analysis: visually defining and refining cohorts, and requesting interactive analytics,

and looking at the results without any manual assistance. It is this ideal goal that we are striving to reach

in our work.

Motivated by the healthcare cohort analysis scenario outlined above, we have identified a set of key

requirements that should be satisfied in an ideal solution:

• Easy cohort definition. Clinical domain experts should be able to easily select cohorts of patients

for investigation. This can be in the form of both computational analyses which automatically identify

interesting cohorts from a large population, or visual interfaces that allow clinicians to define cohorts

ad hoc.

• Flexible visualization. Clinical domain experts should be able to flexibly visualize cohorts, pivoting

between various visualization metaphors as part of an interactive exploratory process without requiring

any intervention by technology experts.

• Flexible analysis. Clinical domain experts should be able to flexibly perform analyses of various

kinds on a cohort without requiring any intervention by technology experts.

• Cohort refinement and expansion. Clinical domain experts should be able to easily constrain

and/or expand cohorts based on discovered findings as part of their exploration.
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• Iterative analysis. The above requirements should be supported within an iterative process that

allows refinement and exploration during an open-ended investigation.

These design requirements were informed by unstructured interviews about workflow and task require-

ments conducted with a number of clinicians. As part of ongoing research collaborations on a range of medical

informatics projects, we have captured input from physicians with different specialties, home institutions,

and work experiences. The length of time spent interacting with each clinician has varied widely, ranging

from a few hours to years of close collaboration. Using the insights obtained from our clinical collaborators,

we developed the consolidated set of common requirements presented here.

These requirements form CAVA’s core set of design guidelines as reflected in Section 4. Moreover, the

use cases outlined in Section 6 have been included to demonstrate how our approach helps satisfy these

requirements when applied to our motivating problem domain. Finally, key benefits from our approach are

documented in the results of the evaluation presented in Section 7.

3 Related Work

This section provides an overview of related work. We focus on techniques most relevant to CAVA, including

general cohort analysis, data analysis algorithms, visual analytics techniques, and visual analytics systems

applied to healthcare and beyond.

3.1 Cohort Analysis

A widely used technique in fields such as ecology, bioinformatics, social science, and healthcare, cohort

analysis is a research method for analyzing changes in group members through the use of a set of statistical

techniques [1]. One of the most common ways that cohort analysis is used is to analyze medical risk factors in

clinical studies [2]. Often, such studies are designed to follow a group of people without a disease. Based on

longitudinal observations, a correlation analysis is performed to determine the risk of a subject contracting

the disease by correlation analysis and the relative importance of various risk factors. In epidemiology [3],

similar techniques are used to find correlations or causal relations between a given disease and the exposure

to certain environmental conditions or behaviors.

Most often, cohort studies are performed prospectively. Cohorts of interest are defined in advance based

on an expert’s initial hypotheses (e.g., defining cohorts with and without a given pharmacological exposure,

with various controls over the population’s characteristics). A predetermined set of data for the individuals

in these cohorts is then gathered over time and eventually analyzed to uncover significant correlations. While
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this approach can produce very valuable insights, prospective studies of this form typically require expensive

data gathering efforts and take significant time to design and execute. Moreover, any changes to the initial

hypotheses most often result in additional time-consuming studies with new populations. This burden limits

a domain expert’s ability to easily explore and refine hypotheses based on his/her findings.

In contrast, retrospective cohort analyses offer significantly more flexibility. Because these studies utilize

already-captured data records, an expert can investigate new hypotheses or find valuable correlation without

the time or expense associated with designing and running an additional prospective study. However, the

method of retrospective study also has issues. While valuable correlations may be discovered, such a technique

is not suitable to prove causation. Moreover, this approach is often at higher risk to bias and may miss

rare events. For this reason, retrospective studies are most effective when applied to larger sample sizes.

Nevertheless, the large scale of retrospective data often requires a domain expert to work with a team of

technology experts (i.e. database support, data mining and visualization expertise) to explore alternative

hypotheses.

3.2 Data Analysis Algorithms

Given the large scale that is typical of retrospective data—both in terms of population sizes and the number

of data features available per person—data analysis algorithms have been widely used to support cohort

analyses tasks. They automatically process large collections of population data to classify or segment a

population, or to compute new derived features. For example, similarity analysis can be used to identify a

cohort of similar patients given a target index patient, which can then be used as the basis for decision support

[4]. Similarly, Ebadollahi et al. [5] utilized similarity analysis for near-term prognostics for physiological data.

Chattopadhyay et al. [6] used similarity for risk assessment. Huxley et al. [7] estimate the relative risk for

fatal coronary heart disease associated with diabetes by inverse variance and meta-analysis of 37 prospective

cohort studies. Seid et al. [8] adopted the method of PedsQL 4.0 Generic Core Scales [9] and other statistical

analysis methods such as multiple linear regression analyses and conducted a two-year prospective cohort

analysis. Other examples of analytics include predictive models that generate new derived features (e.g.

disease specific risk scores) after being trained from large sets of population data [10].

These algorithms allow for the efficient processing of large amounts of data. However, they typically

work like a black box with users having little or no control over the analytical pipeline. The lack of user

input makes it impractical for exploratory analysis where users need to explore alternative hypotheses.
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3.3 Visual Analytics Techniques

To help capture user input and make the analysis process more interactive, visual analytics techniques

combine visualization, data mining, and statistics with interactive interfaces that allow the users to apply

their domain knowledge [11, 12, 13]. Visual analytics can help overcome limitations with the classical one-

way data analysis process by letting the user become directly involved influencing the way data is processed

[14]. A similar concept was also proposed in the field computational steering [15], which lets the user

lead the exploration of simulations, with prompts to direct the simulation. All of these techniques allow

the users to apply their domain knowledge in the traditional automatic analytical/computational process;

and visualizations are used to provide immediate feedback to guide the following steps. CAVA is designed

similarly, allowing the user to directly influence the inputs, control parameters, and timing of execution for

supported data analysis computations.

A key element of any visual analytics system is visualization. Interactive visualization techniques can

provide domain expert users with intuitive data representations that can be quickly understood, explored, and

manipulated. Complementing more traditional charting methods (such as tables, bar charts and histograms),

an enormous variety of sophisticated techniques have emerged from the information visualization community

over the years. Many of these designs can be effectively employed in a cohort analysis context and our CAVA

prototype includes components that implement several well known visual metaphors. Given the nature

of many cohort analyses, two types of visualizations are often highly critical: (1) hierarchical or multi-

dimensional data visualizations to segment based on complex sets of population attributes (e.g., [16, 17, 18,

19, 20, 21]), and (2) temporal visualizations to navigate events over time in a populations’ longitudinal data

(e.g., [22, 23, 24, 25, 26, 27, 28, 29]). For populations that include geographic information, maps are also a

powerful visual metaphor.

The prototype implementation of CAVA described in this paper supports several different visualization

types. For example, Treemaps are used as a display for hierarchical data [30] and are coded to support

selection which can coordinate with other linked views. Similarly, CAVA employs a temporal visualization

view that is a generalized extension of the Outflow technique [27, 31, 32]. Recognizing that different types

of cohort analyses can require different sets of visualization capabilities, CAVA’s design allows for the easy

integration of additional views without changes to the underlying cohort analysis platform.

Another aspect of visual analytics research related to CAVA is analytics provenance. Many projects have

explored techniques for capturing and modeling a user’s analytical process history. For example, Jankun-

Kelly et al. [33] introduced the P-Set model of visualization exploration and a framework to encapsulate,

share, and analyze visual explorations. Perer and Shneiderman designed a systematic yet flexible framework
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that allows analysts to take exploratory excursions while keeping track of overall progress [34]. In related

work, Shrinivasan and Wijk [35] presented an information visualization framework that captures the analyti-

cal reasoning process via interaction with multiple views. The views are used for data visualization, recording

analysis artifacts, or representing the analysis states. Gotz and Zhou [36] characterized users visual analytic

activity at multiple levels of granularity; and then identified a critical level of abstraction, Actions, that

can be used to represent visual analytic activity with a set of general but semantically meaningful behavior

types. CAVA also captures a user’s history and exposes it through the user interface for inspection and

manipulation. CAVA’s history is modeled in terms of its key artifacts: cohorts, views, and analytics.

3.4 Systems and Applications

Recently, Rind et al. [37] gave a survey of tools and systems in the healthcare field and showed that effec-

tive information visualization can facilitate analysis of EHRs for patient treatment and clinical research. A

number of cohort-focused visual analytics systems have been developed and applied to specific types of appli-

cations. For example, in the domain of healthcare analytics, Steenwijk et al. [38] proposed a visual analysis

framework for cohort studies of heterogeneous data using mappers to connect features across domains. Cao

et al. [39] designed DICON, a tool that allows users to interactively view and refine patient clusters. Gotz

et al. [40] extended DICON and integrated it into a similarity-based clinical decision intelligence system.

Lins et al. [41] developed VisCareTrials, a system that captures patients’ medical events and summarizes

event paths. Chui et al. [42] introduced a system for disease monitoring and bio-surveillance that uses a

multi-panel graph to integrate temporality and demographics. Perer and Sun [43] introduced MatrixFlow

that analyzes temporal patterns of co-occuring clinical events and supports comparison across cohorts. In

all of these systems, however, the analysis follows a predefined flow. Our work, in contrast, allows flexible,

user-composed workflows that combine analytics and visualization. CAVA builds upon the early work of

Zhang et al. [44] who described a preliminary prototype for interactive cohort analysis. In this paper, we

extend this approach and propose a standardized model and platform for exploratory and iterative cohort

analysis workflows.

Finally, while we have focused on the healthcare domain as our motivating scenario, similar problems

have been explored in other domains. For instance, Ferreira et al. [45] built a system that supports the

analysis of spatio-temporal bird distribution models. Dou et al. [46] introduced ParallelTopics that dealt

with large document collections. Xu et al. [47] presented a system that can analyze large-scale digital

collections for archival purposes. Each of these addresses an application domain featuring the analysis and

exploration of collections of entities. Therefore, our CAVA framework could be extended to support these
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Notation Description

Ci A cohort
mz An individual member of a cohort
~fmz

The feature vector for member mz

F in
Ci

The inner feature set for Ci

F out
Ci

The outer feature set for Ci

Aj An analytic (a type of operational artifact)
Vk A view (a type of operational artifact)
~αj A vector of input parameters for operational artifact j
~αk A vector of input parameters for operational artifact k

F pre
Aj

The prerequisite feature set for Aj

F pre
Vk

The prerequisite feature set for Vk

Table 1: A summary of the notation used in this paper.

topics by developing an appropriate set of views and analytic components. For example, to explore document

collections, an analytic component for Latent Dirchlet Allocation (LDA) topic modeling (as used in [46])

could be developed.

4 System Design

CAVA is designed to meet the key requirements outlined in our motivating application scenario. It allows

users to select, visualize, analyze, and refine cohorts obtained from large population-oriented datasets. More-

over, these steps can be performed iteratively as part of complex ad hoc analytical workflows. This section

provides a detailed discussion of this design, beginning with a discussion of CAVA’s three key artifacts:

cohorts, analytics, and views. We then describe how CAVA binds these artifacts together into an integrated

architecture. Finally, we discuss CAVA’s user interface and the prototypical workflow that the system sup-

ports. As concepts are presented, we adopt the notations defined in Table 1 which we then use throughout

the remainder of the paper.

4.1 Key Artifacts

There are three key artifacts at the core of CAVA’s design. First, CAVA’s primary data artifact is the

cohort which represents a collection of individuals selected from an overall population. Cohorts are then

manipulated by two different types of operational artifacts: analytics and views.

4.1.1 Cohorts

A cohort is CAVA’s most important data construct. We define a cohort Ci as a set of individual members

mz such that Ci = {mz}. In addition to its membership, a cohort has global properties, such as a label
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(i.e. a human-consumable name for display through a user interface) and aggregate statistical summaries of

the underlying membership. Each member mz has associated with it a feature vector, noted as ~fmz
. This

feature vector contains the set of all information known about the corresponding member.

For example, in the healthcare domain described in our motivating scenario, a cohort would represent a

set of patients. A potentially large number of features may be associated with each member in the cohort,

such as a patient’s demographics (age, gender, etc.), diagnoses, treatments, and lab results.

An important aspect of this definition is the potential for large variations between different cohort mem-

bers’ feature vectors. Unlike data that has been carefully curated for prospective cohort studies, retrospective

data can be sparse, irregular, and suffer from many missing values. For example, consider the healthcare

scenario. The many member patients in a cohort are likely to have different sets of co-morbidities and to have

undergone a wide range of lab tests and treatments. In addition, derived data for a given patient—such as

computed risk scores—may only be available for portions of the population. In practice, individual patients

are not identical.

For these reasons, the data contained in ~fmz
can vary widely between mz ∈ Ci. Based on this observation,

we define two additional global properties for a cohort: (1) the inner feature set, and (2) the outer feature

set. Adopting the semantics from SQL’s inner and outer joins, the inner feature set, F in
Ci

, is the set of features

that are present in all members of the cohort.

F in
Ci

=
⋂

mz∈Ci

~fmz
(1)

This is in contrast to the outer feature set, F out
Ci

, which represents the union of all features found at least

once in the cohort’s membership.

F out
Ci

=
⋃

mz∈Ci

~fmz (2)

The sparsity typical of retrospective data corpora means that F in
Ci

is generally much smaller than F out
Ci

for a given cohort. This fact becomes important during the cohort binding process described in Section 4.2.

During typical operation, CAVA maintains a collection of multiple cohorts. First, a special pre-defined

cohort, P , is used to represent the set of all members in an overall population. For instance, P might contain

all patients in a cardiology department’s medical record system. A number of other cohorts—such as a group

of elderly men, or a group of patients at-risk for hospital readmission—are then defined as subsets of P using

the operational artifacts described later in this section: analytics and views. In this way, P is the superset

for all CAVA cohorts.
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Figure 2: Both analytics and views are operational artifacts which manipulate a given cohort. Analytics
(Aj) can be used to computationally change a cohort’s membership and/or expand its inner feature set. In
contrast, views (Vj) allow manual interaction (e.g., visual filtering) to drive the cohort manipulation process.
Most typically, views are used to reduce a cohort while analytics expand a cohort.

4.1.2 Analytics

Analytics are the first of two distinct types of operational artifacts in CAVA. Unlike cohorts, which represent

data, operational artifacts represent components that manipulate data in some way, converting an input

cohort Ci into a newly modified output cohort C ′
i.

An analytic, noted Aj , is a specific type of operational artifact which applies a computational algorithm

to Ci in order to produce the output result. A CAVA system contains a collection of one or more analytic

components, each responsible for performing a distinct analytical function. Along with an input cohort,

many analytic algorithms expose additional setting or control parameters. Therefore, CAVA allows individual

analytic components Aj to require a custom vector of additional input parameters, noted as ~αj . Each Aj can

have its own specification for what values are required as part of ~αj , which typically reflect an algorithm’s

control parameters, such as thresholds or settings. Given this formulation, we model analytic Aj as the

function defined in Equation 3.

Aj(Ci, ~αj) = C ′
i (3)

Analytic components can modify cohorts in two distinct ways. First, analytics can refine the membership

of a cohort by adding and/or removing members. For example, an analytic might perform a similarity analysis

to grow a cohort by finding “more people like these”. Analytics that refine membership may also, indirectly,

impact global properties of a cohort. Second, analytics can refine the feature space for a cohort by adding,

removing, or updating features from the cohort members’ feature vectors. Most typically, such analytics

compute new types of feature, expanding F in
Ci

. For example, an analytic in the healthcare domain could be

developed to derive a body-mass index (BMI) score1 for all patients in a cohort using their corresponding

1BMI is calculated from a patient’s height h (in meters) and weight w (in kilograms) [48] as follows: BMI = w/h2
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height and weight measurements.

In the example above, computing BMI requires access to height and weight measurements. This demon-

strates that some analytics may require that certain features be present in F in
Ci

to function properly. For

example, the BMI analytic described above would require that each member of the input cohort have both a

height and weight. We refer to these required features as the prerequisite feature set, which we note as F pre
Aj

.

CAVA supports two different types of analytic components: (1) interactive analytics and (2) batch

analytics. Both interactive and batch analytics adhere to the definition presented in Equation 3. However,

as described in more detail in Section 4.2, they are treated quite differently by the CAVA platform.

An interactive analytic operates on an input cohort synchronously. It executes immediately upon request

and blocks any further user interaction until it returns C ′
i upon completion. In the user interface, this is

reflected with a progress bar indicator. Interactive analytics are used for relatively fast computations where

the time required for execution is sufficiently minimal that the delay is acceptable within an interactive user

interface. For example, the BMI calculator described above would be encapsulated as an interactive analytic

because the arithmetic calculations required to produce a BMI score (given the raw height and weight values

for all patients in a cohort) can be performed very quickly.

In contrast, batch analytics operate asynchronously. Designed for long-running calculations, batch ana-

lytics work in the background and save resulting C ′
i cohorts for subsequent analysis when users return to see

the results. This is in contrast to interactive analytics which return their results immediately to a user. This

model allows users to launch long-running analytics in the background while still continuing their interactive

analysis process.

For example, a batch analytic in the healthcare scenario might perform risk stratification for large pop-

ulations using complex high-dimensional calculations that cannot be performed at interactive rates for large

input cohorts. A user could initiate such a risk stratification batch analysis on a group of interesting patients,

then immediately return to visually explore other aspects of the cohort without waiting for the computation

to terminate.

The example above describes how users can initiate batch analytic processes. However, batch analytics

can also be executed automatically by the CAVA system itself. As described in Section 4.4, CAVA can run

a set of batch analytics to bootstrap the system with an initial set of system-generated cohorts to serve as

starting points for users’ interactive analyses.

4.1.3 Views

The second type of operational artifact in CAVA is the view, noted as Vk. Like analytics, views are compo-

nents that manipulate an input cohort Ci and produce a new output cohort C ′
i for further analysis. However,
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views do not rely primarily on computational algorithms to compute C ′
i. Instead, views are visualization-

based display components that rely on a user’s interactions to modify Ci. In general, a CAVA system contains

a collection of views designed for various purposes. Some views may be general in scope while others may

be designed for a more narrow and specific task.

As with analytic components, a view Vk can be initialized with a vector of values ~αk which contains

view-specific input parameters. For example, ~αk could include settings for color scales, layout options, data

transformations, or mappings to initialize configurable axes. Given these input parameters and the input

cohort Ci, we define a view Vk as follows:

Vk(Ci, ~αk) = C ′
i (4)

Using the inputs Ci and ~αk, views produce a graphical depiction of Ci and allow users to interactively

explore the data. In particular, views provide users with visual mechanisms to select subsets of the population

to apply filters. This allows users to interactively refine a cohort, most commonly by removing members mz

from Ci that are no longer of interest with a combination of selections and filters. This use case is illustrated

in Figure 2.

For example, a demographic view might provide visualizations of age, gender, and ethnicity distributions

for a given cohort. In addition, the view could allow a user to interactively select subgroups for filtering

(e.g., selecting only females over the age of 50).

However, views are not limited to simple filtering. Views can be designed to support more sophisticated

cohort manipulations such as annotation, which would allow users to label selected subsets of patients with

additional features (e.g., as in [49]). In this way, views can be designed to not only narrow the focus of an

analysis to members of interest, but also to help expand F out
Ci

based on discoveries made using a visualization.

As with analytics, individual views can specify a prerequisite set of features in F in
Ci

for the input cohort

Ci for the view to function properly. For example, the demographic view described above might require that

each member of the input cohort have an age, gender, and ethnicity. The prerequisite feature set for a view

Vk is noted F pre
Vk

.

Finally, views produce output cohorts C ′
i that reflect the manipulations performed within a view. Views

satisfy this requirement by providing an export capability which is used to retrieve the current cohort from

a view at any given point in time. To enforce this requirement, the export function is specified as part

of CAVA’s required API for view components. Therefore, from a functional perspective, view artifacts are

identical to analytic artifacts in that they both take a cohort as input (along with an optional set of input

parameters) and produce a new cohort as output. This commonality is central to the CAVA design.
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Application Controller

D
atabase Controller

Cohort
Database

Population
Database

VkAj

Figure 3: The high-level architecture adopted by CAVA. Two logical database contain population and cohort
data, while a database controller manages access to these resources. The application controller provides the
runtime logic to (a) connect the libraries of analytic and view components with data sources and (b) manage
user interaction.

4.2 Architecture Overview

The CAVA architecture builds directly upon the three design artifacts defined above. As illustrated in Figure

3, two logical databases are used to store the system’s data. The population database contains all known

information about the individual members of a population. As new data about individuals is derived (via

either analytics or views), it is appended to this database.

The second database is stores cohort information. Updates are made to the cohort database as new

cohorts get defined, or as existing cohorts get refined (i.e., changes in membership and/or global properties).

For each cohort, CAVA maintains a list of member ID values (used as keys within the database schemas)

which allows for the joining of data across the two databases.

Access to these data sources is provided by a database controller. This component manages database

connections and provides a standard application programming interface (API) to the underlying data. This

API is then used by an application controller for all data access and manipulation. This approach allows the

vast majority of the system to remain database agnostic, making it simpler to connect to alternative data

sources for new applications or deployment environments.

The application controller serves as the central management component within the CAVA architecture.

It connects and coordinates the various components of the platform, and it ties these elements to the user

interfaces to form a single integrated system. We describe the coordination process in more detail in Section

4.4.

Included within the resource pool managed by the application controller are two libraries of plugins,
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one for analytics and one for views. CAVA defines generic analytic APIs and view APIs that must be

implemented by each instance of these components. The APIs include callbacks to manage lifecycle events

(e.g., the completion of an analytic process, or the rendering of a view through the user interface) and data

requirements (e.g., gathering αj for a given Aj). They also ensure that all operational artifacts adhere to

the contracts defined in Equations 3 and 4, including the ability to export an output cohort. Because the

same APIs are shared across all plugins, the central application controller can be defined to work generically,

agnostic to the specifics of the underlying visualization or data analysis algorithms deployed within the

system.

Configuration files allow the controller to discover which analytic and view components are deployed

within the system. Then, at runtime, the controller orchestrates interactions between the deployed compo-

nents using the generic APIs. Importantly, this approach allows new analysis or visualization components

to be deployed dynamically without making any changes to the rest of the CAVA system. In practice, this

is an important architectural detail because it allows for use-case specific CAVA plugins (e.g., cardiology-

centric vs. oncology-centric risk assessment analytics) to be deployed in different installations without having

multiple builds of the overall platform.

One critical responsibility of the application controller is cohort binding. This is the process by which

the controller initiates execution for either an analytic or a view by pairing it with an input cohort. During

the binding process, the controller checks to ensure that F pre
Aj

or F pre
Vk

(for analytics and views, respectively)

are subsets of F in
Ci

for the given input cohort Ci. The controller aborts the binding and return an error if

the prerequisite test fails. If the prerequisite test succeeds, then the application controller prompts the user

interface to gather any required input parameters αj (or αk for views). Once these binding activities have

been successfully completed, control is passed to the appropriate analytic or view for execution.

4.3 User Interface

A common theme to the CAVA requirements outlined in Section 2 is ease of use. Users in our motivating

scenario must be able to interactively perform both analytics and visualization tasks flexibly, iteratively, and

without requiring intervention from outside technology experts. The user interface for CAVA is designed to

satisfy these requirements.

The interface consists of six panels as shown in Figure 4. The left sidebar contains three panels, one for

each of the CAVA artifact types: cohorts, views, and analytics. The cohort panel displays a list of cohorts

available for further study. The list contains both system-generated cohorts as well as cohorts manually

defined and saved by a user. These cohorts serve as starting points for user analysis tasks. The view panel
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displays several icons, one for each of the views available to visualize a cohort. Similarly, the analytics panel

lists the analytic components that can be used to process a cohort. To apply any operational artifact on a

specific cohort, a user can simply select the cohort of interest from the cohort panel, drag it to the view or

analytic panel, and drop it onto the requested artifact. This simple interaction triggers the binding process

described in Section 4.2.

To the right of the artifact panel, the visualization panel is the largest and most prominent section of the

user interface. Located in the center of the screen, this area is used to display the currently active view and

allows users to interact directly with the visual representation of the cohort data. As a minimum, users can

select subsets of data and apply filters through this panel. The availability of additional interactive features,

such as annotation, depends on the view.

The remainder of the user interface falls to the right of the visualization canvas. It includes a details

panel to show additional information about the cohort currently being visualized, and a history panel that

provides an interactive representation of a user’s visual analysis history. The history is organized as a tree

with buttons that allow revisitation of prior analysis steps. Mousing over buttons provides additional details

about the corresponding step such as applied filter parameters. The granularity of the history maps to the

sequence of operational artifacts applied to the initial cohort (i.e. the chain of analytics and views used to

manipulate the source cohort).

4.4 Typical CAVA Workflow

To better illustrate how users typically navigate the CAVA interface, we describe a typical workflow as

illustrated in Figure 5. The very first step in a CAVA analysis happens automatically prior to any user

interaction. A set of batch analytics—pre-configured as part of the CAVA system’s deployment settings—

process the entirety of the population database. The result of this process is a set of system-generated

cohorts which, along with the default cohort P , can serve as starting points for users’ interactive analyses.

These cohorts are stored in the cohort database. For instance, the risk stratification analytic mentioned in

Section 4.1.2 could be pre-configured to provide CAVA users with an initial set of high-risk patient cohorts

for further investigation.

Following the batch-analytics-based initialization stage, the remaining workflow in CAVA is driven by

user interaction. After first logging in to the CAVA system, a user can browse the cohort panel to see a list of

population groups that are available for visual analysis. At first, these will be the cohorts generated during

the initialization round of batch analytics. Over time, the list grows to include manually crafted cohorts

created via interaction with the CAVA system.
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(d) Visualization Canvas

(c) Analytic
      Panel

(b) View
       Panel

(e) Details
       Panel

(f) History
      Panel

(a) Cohort
       Panel

Figure 4: The CAVA user interfaces consist of six panels. The left sidebar contains lists of the three key
artifacts in the system: (a) cohorts, (b) views, and (c) analytics. When a user binds a cohort to a specific
view via drag-and-drop interaction, the result is displayed on (d) the visualization canvas. The (e) details
panel shows more information about the visualized cohort, while (f) the history panel allows users to revisit
previous steps.

From here, a user can perform one of two operations, both triggered by drag-and-drop manipulation of

an entry in the cohort panel. First, a cohort can be dropped onto an item in the analytics panel. This would

perform additional computation on the set of patients and store the results in the user defined section of the

cohort panel.2 Alternatively, and most common, users can drag a cohort to one of the visualization icons

in the view panel. This would automatically bind the cohort to the visualization, which checks the view

prerequisites F pre
Vk

against the cohort’s F in
Ci

, queries the database to gather data for the cohort members,

and renders the interactive view on the visualization canvas. From a rendered view, users can interactively

explore the data in various ways. The exact set of interactive capabilities available to the user (e.g., brushing,

pan/zoom, annotation, etc.) depends on the specific view that was requested. However, all views allow users

to select subsets of a cohort’s membership and apply filters.

In addition, users can perform one of three subsequent steps. First, users can save a modified cohort

so that it can be revisited at a later time. In response, the newly saved cohort appears in the user defined

2All analytics are treated as batch analytics when the input cohort is taken from the cohort panel. This is because there is
no active view to display the results interactively.
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Figure 5: CAVA allows users to intermix analytics and visualization-based cohort manipulations as part of
an ad hoc exploratory analysis process. A set of batch analytics process the population data to create (a) an
initial set of cohorts. Those cohorts can be (b) bound to views via drag-and-drop interaction. From a view,
users can either (c) save modified cohorts, (d) request additional batch analytics that run in the background,
or (e) trigger interactive analytics for on-demand processing which automatically update the active view.

section of the cohort panel. Second, users can pivot from one type of visualization to another. This allows

users to quickly navigate between multiple visualizations, viewing and refining the cohort throughout the

process. Finally, users can request that a new round of analytics be performed on the cohort. In response,

CAVA first gathers any needed input parameters that the analytic algorithm might require (typically via

a dialog box). It then automatically launches execution of the requested analytic module. For interactive

analytics, the results are automatically bound to the currently active view which displays the newly created

cohort. For longer-running batch analytics, the results are persisted to the cohort database for asynchronous

review by the user. Throughout this process, the history panel records the user’s analysis process (both

views and analytics) which lets the user review his/her past steps and compare cohorts from various stages

of the analysis.

5 Prototype Implementation

Based on the design proposed above, we have developed a prototype CAVA implementation targeting the

healthcare domain. Our prototype connects to a population database containing electronic medical data

for a set of cardiac patients. For each patient, the dataset contains both demographic information and

longitudinal medical data. The medical portion of the database contains time-stamped records of diagnoses,

labs, medications and procedures. This section describes the prototype CAVA platform implementation

details and lists the set of available views and analytics.

5.1 CAVA Platform Implementation Details

The CAVA prototype is a web-based system built using Servlet technology which can be hosted using the

open-source Apache Tomcat server or commercial alternatives (i.e. IBM WebSphere). Server-side application
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logic is developed primarily in Java, with small portions authored using JavaServer Pages (JSP) and SQL.

Client-side features have been developed using HTML, CSS, the Dojo toolkit for user interface widgets and

basic content elements. The SVG-based library D3 [50] is used for most of the visualization rendering, though

some visualization components use a custom Javascript library built on top of HTML5’s Canvas element.

The data model in CAVA is based on the Universal Feature Model (UFM) proposed in ICDA [51], a

large-scale batch-oriented healthcare analytics platform. The data is stored in a relational database (e.g.,

IBM’s DB2) using a standard data model that is optimized for the sparse and high-dimensional nature of

electronic medical data. The UFM data model was designed to be performant for large scale population

analytics and works well for CAVA’s typical workload. As a preprocessing step, the source medical data was

transformed from its original schemas loaded into our UFM-based population database.

In addition to the data model, the ICDA platform provides a powerful runtime environment for data

analytics modules. A plug-in oriented framework allows for the quick deployment of additional analytics, and

the flexible APIs allow for modules developed in a variety of languages such as Java and Python. However,

as originally proposed, ICDA was designed to support only batch analytics. We have therefore extended

the ICDA runtime to support interactive analytics as required by the CAVA application controller shown in

Figure 3.

5.2 Available Views and Analytics

Building upon this foundation, we developed a number of views and analytics specifically targeted to the

healthcare domain. More specifically, the prototype system includes, among others, a demographic overview

(showing distributions for age, gender, and diagnoses), a table view to show detailed information about a

set of patients, a flow diagram based on the Outflow visualization [27] to show how the symptoms progress

along the time, a histogram-based treatment comparison view that uses small multiples to compare patient

subgroups, and a radial chart designed to show hierarchical data such as different medical coding systems.

The CAVA prototype also includes a number of analytics. Batch analytics include a demographic module

(e.g., to define cohorts for men vs women) and a risk stratification module (to identify various groups of

patients at risk for hospitalization based on predictive modeling techniques). Together with the overall

population cohort P , the cohorts generated by these analytics provide the initial set of system-generated

cohorts from which a user can choose when starting a new analysis. On-demand analytics in our prototype

include a patient similarity component [5], a utilization analysis component [52], and a heart failure risk

assessment component [10].

The selection of views and analytics described above were chosen to match the initial needs of our target
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users. As those needs grow, we expect the library of of available view and analytics components will expand

as well. Moreover, we note that while the main focus of our prototype is the visual analysis of patient

cohorts, a CAVA system can be connected to views of single patients where appropriate. For example, the

table view could be extended to allow users to see more information about individual patients, or linked to

external tools such as traditional electronic medical record systems.

6 Use Cases

The CAVA platform enables a wide range of cohort analysis workflows. To highlight some of the benefits

of our approach, we present two CAVA use cases from the healthcare domain. Taken together, these use

cases show how CAVA supports our motivating scenario and addresses the five requirements identified in

Section 2. For each use case, we begin with a description of the user’s analysis task. We then describe the

step-by-step analysis process by which CAVA can help the user complete their investigation. Each use case

is illustrated with a figure showing screenshots of CAVA at various stages of the analysis.

6.1 Use Case: Iterative Search

In this use case, we follow a clinician who has recently become aware of a new preventive technique that has

been shown to help delay or prevent certain types of patients from developing heart disease.3 In particular,

the treatment has been studied most in male hypertensive patients between 60 and 80 years of age. Due to

limited resources and potential side effects, the clinician wants to focus this new treatment regimen on only

those patients who are both (a) at high risk of developing the disease and (b) best fit the selection criteria

for which the treatment is most effective. The clinician uses CAVA to find a cohort of candidates for the

treatment following a usage pattern that we call iterative search.

To start, the physician selects a High Risk group from the cohort panel which has been generated by

a background risk stratification analytic. The user then drags-and-drops the cohort onto the demographic

overview visualization icon. The results in the visualization shown Figure 6(a) which displays linked views of

age, gender, and diagnosis distributions. The user interactively selects various elements in the visualizations

to explore how these three demographic criteria are correlated.

Next, the clinician interacts with the visualization to select and filter to the age group in which the

treatment has been studied: 60 to 80 years of age. By selecting the age range in the histogram and clicking

3The “new preventive technique” mentioned in this scenario is used to demonstrate a hypothetical scenario for CAVA and is
not intended to suggest any novel medical insights. Moreover, this paper makes no claims about the existence or efficacy of any
treatments—new or old—for any disease. Such claims are beyond the scope of this paper and would require rigorous clinical
evaluations which are not part of this manuscript.
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(a)

(b)

(c)

Figure 6: CAVA supports an iterative search process as described in the first use case of Section 6. This
sequence shows several snapshots from the scenario where a clinician expands and refines an initial high-risk
cohort using a mix of visual filters and patient similarity analytics. The end result is a targeted cohort of
candidate patients for a new treatment regimen.
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the filter button, the user modifies the cohort to exclude those outside the specified range. The clinician

then selects the men in the cohort and applies an additional filter. The result is shown in Figure 6(b). As

a result of the filters, the initial cohort has been reduced to a group roughly one third in size. However,

the clinician presumes that there are likely additional patients—missing from the current cohort—who are

clinically similar to the visualized patients and could benefit from the treatment even if they don’t strictly

meet the inclusion criteria. Therefore, the clinician decides to search for similar patients by dragging the

current cohort from the active view to the Patient Similarity entry in the analytic panel. In response, CAVA

binds the visualized cohort to the analytic and presents the user with a dialog box to gather the needed

input parameters. In particular, the clinician indicates that she wants to retrieve enough similar patients to

double the size of the cohort. After clicking OK, CAVA runs the analytic and updates the visualization with

the newly expanded cohort.

The visualization now shows the additional similar patients, but the clinician is still not finished. Because

the treatment was designed for patients with hypertension, she selects the hypertension subgroup in the

visualization (as shown in Figure 6c) and applies one last filter. The clinician has now used a combination of

ad hoc filters and analytics to identify an initial set of candidate patients to target with the newly available

treatment. Moreover, they have accomplished this without the help of a technology team to write SQL

queries, run analytics, or produce reports.

6.2 Use Case: On-Demand Analytics

In this use case, a clinician has been told by her medical director that an unusually high number of cardiac

patients with hypertension are ending up in the hospital with a specific set of symptoms. Given the increased

danger to patients and the expense associated with a hospitalization, the clinician wants to identify a

cohort of at-risk patients that would most benefit from a proactive care management plan designed to avoid

hospitalization.

The clinician begins by dragging the All Patients cohort to the demographics overview visualization icon.

This results in a visualization summarizing age, gender, and diagnosis distribution for the full population of

patients. She immediately selects hypertension in the diagnosis Treemap and applies a filter to focus on the

right subgroup of patients. The result is shown in Figure 7(a).

However, the clinician still needs to focus her analysis on only those most at risk for hospitalization. She

therefore drags the modified cohort from the visualization panel to the Hospitalization Risk analytic. This

causes CAVA to bind the selected analytic component to the user defined group of hypertensive patients

and initiate the scoring process. The cohort’s patients are then each assigned a hospitalization risk score
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(a)

(b)

(c)

Figure 7: CAVA supports on-demand analytics as described in the second use case of Section 6. This set of
screenshots shows a user taking advantage of an interactive hospitalization risk analytic to expand the set
of available features associated with her cohort. This allows her to filter down to patients who are evolving
along high-risk clinical pathways.
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that predicts the likelihood of hospitalization based on each patient’s unique medical history. When the

on-demand analytic returns, this new feature is appended to the cohort’s inner feature set (F in
Ci

). However,

because the currently active view (the demographic overview) does not display this attribute, no visible

changes appear in the visualization.

To visualize both the newly calculated risk assessments along with variations in symptom progression

within the current cohort, the clinician pivots to the Outflow view [27] via the same drag-and-drop interaction

used to launch the hospitalization risk analytic. This view, shown in Figure 7(b), illustrates how different

symptom progression pathways lead to different hospitalization risk assessments.

The clinician finds the location in the view that represents the set of symptoms reported by the medical

director and sees that it does indeed correspond to a high risk of hospitalization as predicted by the data-

driven analytic component. However, the clinician also sees that this view doesn’t tell the full story. Several

related paths with similarly high risk scores branch off earlier in time with somewhat different symptom

progressions. The clinician therefore selects an earlier branch in the Outflow diagram and applies a filter to

obtain this larger subgroup of high-risk patients. Now that this set of at-risk patients has been identified,

the clinician pivots again by dragging the cohort to the table view (Figure 7c) to get a detailed list of patient

names and ID numbers. As in the first use case, the clinician has succeeded without relying on a team of

technologists at each step.

7 Domain Expert Evaluation

To evaluate our approach, we shared the CAVA system with a emergency room physician with over 15 years

of experience practicing medicine and 20 years as a medical executive. His history with both bedside care

and healthcare management gives him valuable perspective regarding individual patient care and population

management.

The doctor spent roughly one hour reviewing our CAVA prototype applied to a population of over

32,000 cardiac patients. The dataset analyzed with CAVA contains both demographic and longitudinal data

extracted from the EMR system of a United States-based care provider. The patient data was de-identified

to preserve patient privacy, but was otherwise used as stored within the EMR. The data therefore contains

real-world distributions and challenges with respect to noise, missing data, and potential bias.

After examining the patient population through the CAVA interface, the doctor was interviewed about

his experience. During the interview, he was asked to comment about both (a) the design and usability

of the system from the domain expert’s perspective, (b) the applicability of the CAVA system to problems

faced by major healthcare organizations.
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7.1 Usability and Design

Overall, the doctor found CAVA to be “pretty intuitive” and “very useful.” He found the ability manipulate

cohorts by dragging and dropping them between analytics and views interchangeably valuable, stating that

it provides “speed and validation in a hurry.” When asked to provide more detail, he respond by saying that

“You can picture someone sitting down over a couple of days with these tools” to complete a detailed set of

population studies. He contrasted this to existing workflows using spreadsheets and charting capabilities as

currently used, which would require “two weeks of analysis at a minimum” to answer some basic questions.

He described it as a much more manual process which would benefit from the easy-of-use and computational

power in CAVA. “I think people will be very very impressed at the easy of use factor compared to what they

are doing.”

One area where he suggested improvements is in the integration of more statistical capabilities within the

views. In particular, when discussing the patient similarity analytics and their ability to expand cohorts, he

asked “how do you know if there are not enough patients?” This implies that quantitative statistical metrics

about a cohort should be available to compliment the graphical views. As currently designed, the CAVA

framework can easily support such statistics as integrated pieces of an individual view. However, the general

nature of this requirement suggests that building statistical capabilities directly into the representation of a

cohort would be an interesting extension to the existing CAVA design.

7.2 Applicability to Healthcare Challenges

In terms of the applicability of CAVA to healthcare challenges, the doctor was generally very positive. When

describing how new medical procedures or practices are discovered, he pointed out that “somebody had

the idea that doing things a little differently might help a different group of patients. [CAVA is] a tool to

help you figure that out” because it allows you to quickly and easily experiment with analyses on different

subgroups.

The primary area where the doctor suggested potential problems for medical use cases was the limited

amount of patient detail provided even in CAVA’s table view. He suggested that after deriving a cohort of

interest, clinicians will need more than just a summary of diagnoses and basic demographics. “All of this

makes sense, except for the details” of the patients in the table. “That’s useful only up to a point. ... This

is where you tie back to the unstructured data” such as discharge summaries and case summaries. The

“narrative unstructured data will interest physicians more than just looking at the table.”

In terms of the workflow that CAVA supports, he called it a great match for how things are done in

practice. He is planning a study with a collaborator regarding dietary changes in different patient cohorts
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and said “this would be perfect.” Describing how he would use CAVA, he stated: “Within the initial working

cohort, you identify a sub-cohort of interest but that may be too small. So you go back to the original dataset

and find more people like this to fill out the dataset [with similarity analytics]. ... That’s what happens in

the real world.” He went on to say that “tools to do that and make it happen like this [snaps his fingers] is

very useful. ... I’d love to show this to [my collaborator], she’ll go nuts.”

When asked to comment on the benefits of having the ability to run analytics on demand over a given

cohort of patients, the doctor recounted a story from his medical training. Patients were arriving at the

hospital with meningitis and seizures. “I saw the first person I ever saw die,” in part because the “doctors

did not recognize what was happening” soon enough. They were looking at data manually, individually, one

patient at a time. He felt that when doctors see a trend, a tool like CAVA could let them quickly discover

what a group of patients have in common.

8 Conclusion and Future Work

This paper presented CAVA, a platform for Cohort Analysis via Visual Analytics. CAVA is designed to help

domain experts work more independently and more quickly when performing retrospective cohort studies. To

motivate our work, we began with a review of a sample scenario from the healthcare domain where analysts

need to manipulate and explore groups of patients and their associated data to derive insights. Using this

example application, we then distilled a set of five important requirements that drove our design decisions

when developing the CAVA platform. These include (1) simple cohort definition, (2) flexible visualization,

(3) flexible analysis, (4) cohort refinement and expansion, and (5) iterative analysis capabilities.

We then presented the design of the CAVA platform itself. The proposed architecture achieves each of

the five identified requirements through a design centered around three primary types of artifacts. Cohorts

are the primary data artifact, representing a group of individuals and their associated attributes. Cohorts

are then manipulated through two different types of manipulations: analytics and views. CAVA treats

both of these types of operational artifacts as equivalent in terms of their abstract functionality. More

specifically, both analytics and views process an input cohort and, in response to input parameters and/or

user interaction, produce a new output cohort. Given this common formulation, CAVA allows users to

chain together arbitrary sequences of visual and analytical cohort manipulations via its drag-and-drop user

interaction model. In addition, we described the typical CAVA workflow and presented the details of our

initial prototype implementation. Then, we presented two use cases from the healthcare domain that show

the types of analyses made possible by the CAVA platform. Finally, we conducted a user study to justify

the design and usability of our approach. Results showed that our framework met the domain requirements
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and was helpful to address specific healthcare challenges.

While the provided use cases show that CAVA can support a range of analysis tasks, many topics remain

for future work. First, a comprehensive user evaluation is essential. We are currently working with domain

experts to gather initial feedback on our prototype system and plan to conduct more formal user studies as

our prototype evolves. Second, we are working to expand the set of analytics and views available to users.

This will help make a wider range of analyses possible using CAVA. Finally, we are looking at ways to expand

the functional model we use to represent analytics and views. For example, many cohort study tasks involve

the comparison of multiple subgroups. Currently, this is handled via sub-grouping that is performed within

a given analytic or view. However, allowing cohorts and views to work with a set of cohorts as input and

output parameters (rather than the current single cohort formulation) can enable more powerful workflows.
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[28] Wongsuphasawat K, Guerra Gómez JA, Plaisant C, Wang TD, Taieb-Maimon M, Shneiderman B.

LifeFlow: visualizing an overview of event sequences. In: Proceedings of the 2011 annual conference on

Human factors in computing systems. ACM; 2011. p. 1747–1756.

[29] Zhang Z, Wang B, Ahmed F, Ramakrishnan I, Zhao R, Viccellio A, et al. The Five W’s for Informa-

tion Visualization with Application to Healthcare Informatics. IEEE transactions on visualization and

computer graphics. 2013;19(11):1895–1910.

[30] Bruls M, Huizing K, van Wijk J. Squarified Treemaps. In: In Proceedings of the Joint Eurographics

and IEEE TCVG Symposium on Visualization. Press; 1999. p. 33–42.

[31] Gotz D, Wongsuphasawat K. Interactive Intervention Analysis. In: AMIA Annual Symposium Pro-

ceedings. American Medical Informatics Association; 2012. .

[32] Perer A, Gotz D. Data-driven Exploration of Care Plans for Patients. In: CHI ’13 Extended Abstracts

on Human Factors in Computing Systems. CHI ’13. New York, NY, USA: ACM; 2013. p. 439–444.

[33] Jankun-Kelly TJ, Ma K, Gertz M. A model and framework for visualization exploration. IEEE Trans-

actions on Visualization and Computer Graphics. 2007;13(2):357–369.

[34] Perer A, Shneiderman B. Systematic yet flexible discovery: guiding domain experts through exploratory

data analysis. In: Proceedings of the 13th international conference on Intelligent user interfaces. ACM;

2008. p. 109–118.

[35] Shrinivasan YB, van Wijk JJ. Supporting the analytical reasoning process in information visualization.

In: Proceedings of the twenty-sixth annual SIGCHI conference on Human factors in computing systems.

ACM; 2008. p. 1237–1246.

[36] Gotz D, Zhou M. Characterizing Users’ Visual Analytic Activity for Insight Provenance. Information

Visualization. 2011;8(1).

[37] Rind A, Wang TD, Aigner W, Miksch S, Wongsuphasawat K, Plaisant C, et al. Interactive Information

Visualization to Explore and Query Electronic Health Records. Foundations and Trends R© in Human–

Computer Interaction. 2013;5(3).

32



[38] Steenwijk MD, Milles J, van Buchem MA, Reiber JHC, Botha CP. Integrated visual analysis for

heterogeneous datasets in cohort studies. In: IEEE VisWeek Workshop on Visual Analytics in Health

Care; 2010. .

[39] Cao N, Gotz D, Sun J, Qu H. DICON: interactive visual analysis of multidimensional clusters. IEEE

Transactions on Visualization and Computer Graphics. 2011;17(12):2581–2590.

[40] Gotz D, Sun J, Cao N, Ebadollahi S. Visual Cluster Analysis in Support of Clinical Decision Intelligence.

In: AMIA Annual Symposium Proceedings. vol. 2011. American Medical Informatics Association; 2011.

p. 481.

[41] Lins L, Heilbrun M, Freire J, Silva C. VisCareTrails: Visualizing Trails in the Electronic Health Record

with Timed Word Trees, a Pancreas Cancer Use Case. In: IEEE VisWeek Workshop on Visual Analytics

in Health Care; 2011. .

[42] Chui KKH, Wenger JB, Cohen SA, Naumova EN. Visual analytics for epidemiologists: understanding

the interactions between age, time, and disease with multi-panel graphs. PloS one. 2011;6(2):e14683.

[43] Perer A, Sun J. MatrixFlow: Temporal Network Visual Analytics to Track Symptom Evolution during

Disease Progression. In: AMIA Annual Symposium Proceedings. vol. 2012. American Medical Infor-

matics Association; 2012. p. 716.

[44] Zhang Z, Gotz D, Perer A. Interactive Visual Patient Cohort Analysis. In: IEEE VisWeek Workshop

on Visual Analytics in Health Care; 2012. .

[45] Ferreira N, Lins L, Fink D, Kelling S, Wood C, Freire J, et al. Birdvis: Visualizing and understanding

bird populations. IEEE Transactions on Visualization and Computer Graphics. 2011;17(12):2374–2383.

[46] Dou W, Wang X, Chang R, Ribarsky W. ParallelTopics: A probabilistic approach to exploring document

collections. In: IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE; 2011. p.

231–240.

[47] Xu W, Esteva M, Jain SD, Jain V. Analysis of large digital collections with interactive visualization.

In: IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE; 2011. p. 241–250.

[48] Healthy Weight: Accessing your Weight: BMI: About Adult BMI. Center for Disease Control and Pre-

vention; 2011. [Online; accessed 24-October-2013]. http://www.cdc.gov/healthyweight/assessing/

bmi/adult_bmi/.

33



[49] Gotz D, Zhou MX, Aggarwal V. Interactive visual synthesis of analytic knowledge. In: IEEE Conference

on Visual Analytics Science and Technology (VAST); 2006. p. 51–58.

[50] Bostock M, Ogievetsky V, Heer J. D3 Data-Driven Documents. IEEE Transactions on Visualization

and Computer Graphics. 2011 Dec;17(12):2301–2309.

[51] Gotz D, Stavropoulos H, Sun J, Wang F. ICDA: A Platform for Intelligent Care Delivery Analytics.

In: AMIA Annual Symposium Proceedings. American Medical Informatics Association; 2012. .

[52] Hu J, Wang F, Sun J, Sorrentino R, Ebadollahi S. A Healthcare Utilization Analysis Framework for Hot

Spotting and Contextual Anomaly Detection. In: American Medical Informatics Association Annual

Symposium (AMIA); 2012. .

34


